115,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
58 °P sammeln
  • Gebundenes Buch

One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space…mehr

Produktbeschreibung
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor.
The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
Autorenporträt
Bruno Siciliano is Professor of Control and Robotics at the University of Naples Federico II in Italy, President of the IEEE Robotics and Automation Society, and a Fellow of both IEEE and ASME. He is Co-Editor of the Springer Tracts in Advanced Robotics series, and the Springer Handbook of Robotics. His research interests include identification and adaptive control, impedance and force control, visual tracking and servoing, redundant and cooperative manipulators, lightweight flexible arms, space robots, human-centered and service robotics. He has co-authored 6 books, 6 edited volumes, and over 240 technical papers. Lorenzo Sciavicco is Professor of Control and Robotics at the Third University of Rome in Italy. He has been one of the pioneers of robot control research. His research interests include automatic control theory and applications, manipulator inverse kinematics techniques, redundant manipulator control, force/motion control of manipulators, and cooperative robot manipulation. He has co-authored 3 books, 1 edited volume, and over 100 technical papers. Luigi Villani is Associate Professor of Control and Robotics at the University of Naples Federico II in Italy. His research interests include identification and adaptive control, impedance and force control, visual tracking and servoing, redundant and cooperative manipulators,and service robotics. He has co-authored 2 books, 1 edited volume, and over 120 technical papers. Giuseppe Oriolo is Associate Professor of Control and Robotics at the University of Rome "La Sapienza" in Italy. He is an Editor of the IEEE Transactions on Robotics. His research interests include nonlinear control and robotics, visual servoing, redundant manipulators, mobile and nonholonomic robots, motion planning, sensor-based navigation and exploration, and service robotics. He has co-authored 2 books and over 120 technical papers.