Alan J. Benesi
A Primer of NMR Theory with Calculations in Mathematica (eBook, ePUB)
64,99 €
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
64,99 €
Als Download kaufen
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
64,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Alan J. Benesi
A Primer of NMR Theory with Calculations in Mathematica (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Presents the theory of NMR enhanced with Mathematica© notebooks
Provides short, focused chapters with brief explanations of well-defined topics with an emphasis on a mathematical description | Presents essential results from quantum mechanics concisely and for easy use in predicting and simulating the results of NMR experiments | Includes Mathematica notebooks that implement the theory in the form of text, graphics, sound, and calculations | Based on class tested methods developed by the author over his 25 year teaching career. These notebooks show exactly how the theory works and provide useful calculation templates for NMR researchers …mehr
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
Andere Kunden interessierten sich auch für
- Alan J. BenesiA Primer of NMR Theory with Calculations in Mathematica (eBook, PDF)64,99 €
- Malcolm H. LevittSpin Dynamics (eBook, ePUB)52,99 €
- James KeelerUnderstanding NMR Spectroscopy (eBook, ePUB)39,99 €
- Horst FriebolinEin- und zweidimensionale NMR-Spektroskopie (eBook, ePUB)46,99 €
- Neil E. JacobsenNMR Data Interpretation Explained (eBook, ePUB)120,99 €
- Magnetic Resonance Microscopy (eBook, ePUB)142,99 €
- Harald GüntherNMR Spectroscopy (eBook, ePUB)74,99 €
-
-
-
Presents the theory of NMR enhanced with Mathematica© notebooks
- Provides short, focused chapters with brief explanations of well-defined topics with an emphasis on a mathematical description
- Presents essential results from quantum mechanics concisely and for easy use in predicting and simulating the results of NMR experiments
- Includes Mathematica notebooks that implement the theory in the form of text, graphics, sound, and calculations
- Based on class tested methods developed by the author over his 25 year teaching career. These notebooks show exactly how the theory works and provide useful calculation templates for NMR researchers
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Erscheinungstermin: 19. Mai 2015
- Englisch
- ISBN-13: 9781119051992
- Artikelnr.: 42923421
- Verlag: John Wiley & Sons
- Erscheinungstermin: 19. Mai 2015
- Englisch
- ISBN-13: 9781119051992
- Artikelnr.: 42923421
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Alan J. Benesi was Director of the Pennsylvania State University NMR Facility from 1987-2012. He earned his Ph.D. in Biophysics at the University of California, Berkeley, in 1975. He has published many papers related to solid state and liquid state NMR, solid state and liquid state NMR relaxation, and rotational and translational diffusion.
Preface viii Chapter 1 Introduction 1 Chapter 2 Using Mathematicac;
Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR
Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The
Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch
Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9
Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum
Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix
Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The
Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41
Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15
Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The
Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50
Chapter 17 Solving the Liouville-Von Neumann Equation for the Time
Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59
Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61
Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences
and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse
Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the
Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24
The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR
86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments
89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96
Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field
Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State
Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real
Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of
Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space
Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134
Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144
Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow,
Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38
Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What
is NMR Relaxation and what Causes it? 163 Chapter 40 Practical
Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41
The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter
42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of
Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for
Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation
Functions and Spectral Densities for Isotropic Rotational Diffusion 198
Chapter 45 Conclusion 202 Bibliography 203 INDEX 000
Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR
Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The
Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch
Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9
Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum
Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix
Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The
Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41
Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15
Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The
Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50
Chapter 17 Solving the Liouville-Von Neumann Equation for the Time
Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59
Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61
Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences
and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse
Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the
Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24
The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR
86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments
89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96
Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field
Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State
Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real
Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of
Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space
Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134
Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144
Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow,
Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38
Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What
is NMR Relaxation and what Causes it? 163 Chapter 40 Practical
Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41
The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter
42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of
Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for
Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation
Functions and Spectral Densities for Isotropic Rotational Diffusion 198
Chapter 45 Conclusion 202 Bibliography 203 INDEX 000
Preface viii Chapter 1 Introduction 1 Chapter 2 Using Mathematicac;
Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR
Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The
Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch
Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9
Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum
Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix
Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The
Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41
Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15
Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The
Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50
Chapter 17 Solving the Liouville-Von Neumann Equation for the Time
Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59
Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61
Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences
and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse
Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the
Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24
The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR
86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments
89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96
Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field
Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State
Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real
Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of
Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space
Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134
Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144
Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow,
Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38
Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What
is NMR Relaxation and what Causes it? 163 Chapter 40 Practical
Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41
The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter
42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of
Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for
Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation
Functions and Spectral Densities for Isotropic Rotational Diffusion 198
Chapter 45 Conclusion 202 Bibliography 203 INDEX 000
Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR
Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The
Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch
Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9
Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum
Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix
Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The
Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41
Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15
Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The
Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50
Chapter 17 Solving the Liouville-Von Neumann Equation for the Time
Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59
Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61
Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences
and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse
Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the
Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24
The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR
86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments
89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96
Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field
Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State
Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real
Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of
Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space
Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134
Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144
Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow,
Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38
Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What
is NMR Relaxation and what Causes it? 163 Chapter 40 Practical
Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41
The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter
42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of
Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for
Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation
Functions and Spectral Densities for Isotropic Rotational Diffusion 198
Chapter 45 Conclusion 202 Bibliography 203 INDEX 000