Applications of Federated Learning in Technological Advancements (eBook, PDF)
Use Cases and Applications
Redaktion: Jayachitra, S.; Pelusi, Danilo; S, Balasubramaniam; Dhanaraj, Rajesh Kumar; Prasanth, A.
162,95 €
162,95 €
inkl. MwSt.
Erscheint vor. 02.09.25
81 °P sammeln
162,95 €
Als Download kaufen
162,95 €
inkl. MwSt.
Erscheint vor. 02.09.25
81 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
162,95 €
inkl. MwSt.
Erscheint vor. 02.09.25
Alle Infos zum eBook verschenken
81 °P sammeln
Unser Service für Vorbesteller - Ihr Vorteil ohne Risiko:
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir Ihnen den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Applications of Federated Learning in Technological Advancements (eBook, PDF)
Use Cases and Applications
Redaktion: Jayachitra, S.; Pelusi, Danilo; S, Balasubramaniam; Dhanaraj, Rajesh Kumar; Prasanth, A.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book explores the applications and advancements of Federated Learning across diverse sectors, focusing on its integration with cutting-edge technologies like IoT, AI, Blockchain, and Digital Twins.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 15.14MB
Andere Kunden interessierten sich auch für
- Applications of Federated Learning in Technological Advancements (eBook, ePUB)162,95 €
- Artificial Intelligence and IoT for Cyber Security Solutions in Smart Cities (eBook, PDF)51,95 €
- Integration of Cloud Computing and IoT (eBook, PDF)54,95 €
- Embedded Artificial Intelligence (eBook, PDF)51,95 €
- Leveraging Computer Vision to Biometric Applications (eBook, PDF)54,95 €
- 5G Enabled Technology for Smart City and Urbanization System (eBook, PDF)54,95 €
- Developing AI, IoT and Cloud Computing-based Tools and Applications for Women's Safety (eBook, PDF)54,95 €
-
-
-
This book explores the applications and advancements of Federated Learning across diverse sectors, focusing on its integration with cutting-edge technologies like IoT, AI, Blockchain, and Digital Twins.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 186
- Erscheinungstermin: 2. September 2025
- Englisch
- ISBN-13: 9781040405406
- Artikelnr.: 74623969
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 186
- Erscheinungstermin: 2. September 2025
- Englisch
- ISBN-13: 9781040405406
- Artikelnr.: 74623969
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
S. Jayachitra, presently working as an Assistant Professor at PSNA College of Engineering and Technology, Dindigul, India. She received B.E. degree in Electronics and Communication Engineering from Anna University, Chennai and M.E degree in Communication Systems from Anna University, Chennai and also pursuing her Ph.D degree in Information and Communication Engineering from Anna University, Chennai, India. She has published more than 25 research articles in reputed International Journals which are indexed in Scopus. She has won two best paper awards and been granted 22 patents. A. Prasanth received the B.E degree from Anna University, Chennai and the M.E degree in Computer Science and Engineering (with specialization in Networks) from Anna University, Chennai and also received a Ph.D. degree in Information and Communication Engineering from Anna University, Chennai, India. He served as a Recognized Ph.D. Supervisor. Five Scholars are pursuing their research, and two completed their Ph.D under his guidance. His name was included in the World's Top 2% of Scientists list in the years 2023 and 2024. Rajesh Kumar Dhanaraj is a distinguished Professor at Symbiosis International (Deemed University) in Pune, India. Before joining Symbiosis International University, he served as a Professor at the School of Computing Science & Engineering at Galgotias University in Greater Noida, India. His academic and research achievements have earned him a place among the Top 2% of scientists globally. Balasubramaniam S (IEEE Senior Member) is working as an Assistant Professor in School of Computer Science and Engineering, Kerala University of Digital Sciences, Innovation and Technology (Formerly IIITM-K), Digital University Kerala, Thiruvananthapuram, Kerala, India. He has totally around 15+ years of experience in teaching, research and industry. He has completed his Post Doctoral Research in Department of Applied Data Science, Noroff University College, Kristiansand, Norway. He holds a Ph.D degree in Computer Science and Engineering from Anna University, Chennai, India in 2015. Danilo Pelusi received the degree in Physics from the University of Bologna (Italy) and the Ph.D. degree in Computational Astrophysics from the University of Teramo (Italy). Currently, he is an Associate Professor of Computer Science at the Department of Communication Sciences, University of Teramo. He has worked as the editor of books by reputed publishers, and Associate Editor of IEEE Transactions on Emerging Topics in Computational Intelligence (2017-2020), IEEE Access (2018-present), IEEE Transactions on Neural Networks and Learning Systems (2022-present) and IEEE Transactions on Intelligent Transportation Systems (2022-present).
1. Journey Towards Federated Learning: Fundamentals, Tools Paradigms,
Opportunities and Challenges 2. Federated Learning-based algorithms for
deployment and model optimization 3. Automation of AI and IoT-based
Data-driven Decision-Making Approaches using Federated Learning Systems 4.
Federated Learning for sustainable development using IoT/Edge Computing
Systems 5. Advances in 5G/6G enabled federated reinforcement learning in
IoT 6. Blockchain Integrated Federated Learning for IoT-based Smart
Applications 7. Federated Learning in Heterogeneous Unmanned Aerial Vehicle
8. Advanced Technologies for Federated learning in Smart Cities and its use
cases 9.Federated Deep Learning for Cyber-Physical Systems in Real-World
Scenarios 10. Use-Cases and Scenarios for Federated Learning Adoption in
IoT.
Opportunities and Challenges 2. Federated Learning-based algorithms for
deployment and model optimization 3. Automation of AI and IoT-based
Data-driven Decision-Making Approaches using Federated Learning Systems 4.
Federated Learning for sustainable development using IoT/Edge Computing
Systems 5. Advances in 5G/6G enabled federated reinforcement learning in
IoT 6. Blockchain Integrated Federated Learning for IoT-based Smart
Applications 7. Federated Learning in Heterogeneous Unmanned Aerial Vehicle
8. Advanced Technologies for Federated learning in Smart Cities and its use
cases 9.Federated Deep Learning for Cyber-Physical Systems in Real-World
Scenarios 10. Use-Cases and Scenarios for Federated Learning Adoption in
IoT.
1. Journey Towards Federated Learning: Fundamentals, Tools Paradigms,
Opportunities and Challenges 2. Federated Learning-based algorithms for
deployment and model optimization 3. Automation of AI and IoT-based
Data-driven Decision-Making Approaches using Federated Learning Systems 4.
Federated Learning for sustainable development using IoT/Edge Computing
Systems 5. Advances in 5G/6G enabled federated reinforcement learning in
IoT 6. Blockchain Integrated Federated Learning for IoT-based Smart
Applications 7. Federated Learning in Heterogeneous Unmanned Aerial Vehicle
8. Advanced Technologies for Federated learning in Smart Cities and its use
cases 9.Federated Deep Learning for Cyber-Physical Systems in Real-World
Scenarios 10. Use-Cases and Scenarios for Federated Learning Adoption in
IoT.
Opportunities and Challenges 2. Federated Learning-based algorithms for
deployment and model optimization 3. Automation of AI and IoT-based
Data-driven Decision-Making Approaches using Federated Learning Systems 4.
Federated Learning for sustainable development using IoT/Edge Computing
Systems 5. Advances in 5G/6G enabled federated reinforcement learning in
IoT 6. Blockchain Integrated Federated Learning for IoT-based Smart
Applications 7. Federated Learning in Heterogeneous Unmanned Aerial Vehicle
8. Advanced Technologies for Federated learning in Smart Cities and its use
cases 9.Federated Deep Learning for Cyber-Physical Systems in Real-World
Scenarios 10. Use-Cases and Scenarios for Federated Learning Adoption in
IoT.