82,95 €
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
82,95 €
82,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
Als Download kaufen
82,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
41 °P sammeln
Jetzt verschenken
82,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
41 °P sammeln
  • Format: ePub

The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.

Produktbeschreibung
The book aims to highlight the potential of Deep Learning (DL)-based methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ruqiang Yan is a professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include data analytics, AI, and energy-efficient sensing and sensor networks for the condition monitoring and health diagnosis of large-scale, complex, dynamical systems.

Zhibin Zhao is an assistant professor at the School of Mechanical Engineering, Xi'an Jiaotong University. His research interests include sparse signal processing and machine learning, especially deep learning for machine fault detection, diagnosis, and prognosis.