Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Herstellerkennzeichnung
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Prof. Dr. Peter Tittmann ist Dozent an der Hochschule Mittweida.
Inhaltsangabe
1 Abzählen von Objekten.- 1.1 Permutationen.- 1.2 Auswahlen.- 1.3 Partitionen von Mengen.- 1.4 Partitionen von natürlichen Zahlen.- 1.5 Verteilungen.- 1.6 Beispiele und Anwendungen.- Aufgaben.- 2 Erzeugende Funktionen.- 2.1 Einleitung und Beispiele.- 2.2 Formale Potenzreihen.- 2.3 Gewöhnliche erzeugende Funktionen.- 2.4 Exponentielle erzeugende Funktionen.- 2.5 Anwendungen erzeugender Funktionen.- Aufgaben.- 3 Rekurrenzgleichungen.- 3.1 Beispielprobleme.- 3.2 Elementare Methoden.- 3.3 Lösung mit erzeugenden Funktionen.- 3.4 Lineare Rekurrenzgleichungen.- 3.5 Nichtlineare Rekurrenzgleichungen.- Aufgaben.- 4 Summen.- 4.1 Elementare Methoden.- 4.2 Differenzen- und Summenoperatoren.- 4.3 Harmonische Zahlen.- 4.4 Weitere Methoden der Summenrechnung.- Aufgaben.- 5 Graphen.- 5.1 Grundbegriffe der Graphentheorie.- 5.2 Spannbäume.- 5.3 Graphen und Matrizen.- 5.4 Das Zählen von Untergraphen - Graphenpolynome.- Aufgaben.- 6 Geordnete Mengen.- 6.1 Grundbegriffe.- 6.2 Grundlegende Verbände.- 6.3 Die Inzidenzalgebra.- 6.4 Die Möbius-Funktion.- 6.5 Das Prinzip der Inklusion-Exklusion.- 6.6 Die Möbius-Inversion im Partitionsverband.- Aufgaben.- 7 Kombinatorische Klassen - Ein allgemeiner Zugang zu erzeugenden Funktionen.- 7.1 Einfache kombinatorische Klassen.- 7.2 Kombinatorische Konstruktionen.- 7.3 Kombinatorische Klassen markierter Objekte.- 8 Permutationen.- 8.1 Die Stirling-Zahlen erster Art.- 8.2 Die symmetrische Gruppe.- 8.3 Der Zyklenzeiger.- 8.4 Geschachtelte Symmetrie.- Aufgaben.- 9 Abzählen von Graphen und Bäumen.- 9.1 Graphen.- 9.2 Die Gruppe Sn(2).- 9.3 Isomorphieklassen von Graphen.- 9.4 Bäume.- 9.5 Planare und binäre Bäume.- Aufgaben.- 10 Wörter und Automaten.- 10.1 Wörter und formale Sprachen.- 10.2 Erzeugende Funktionen.- 10.3 Automaten.- 10.4 Reduktionen von Automaten.- 10.5 Unendliche Automaten.- 10.6 Erzeugende Funktionen in mehreren Variablen und mit Parametern.- Aufgaben.- 11 Ausblicke.- Lösungen der Aufgaben.- Literaturverzeichnis.- Symbolverzeichnis.- Index.
1 Abzählen von Objekten.- 1.1 Permutationen.- 1.2 Auswahlen.- 1.3 Partitionen von Mengen.- 1.4 Partitionen von natürlichen Zahlen.- 1.5 Verteilungen.- 1.6 Beispiele und Anwendungen.- Aufgaben.- 2 Erzeugende Funktionen.- 2.1 Einleitung und Beispiele.- 2.2 Formale Potenzreihen.- 2.3 Gewöhnliche erzeugende Funktionen.- 2.4 Exponentielle erzeugende Funktionen.- 2.5 Anwendungen erzeugender Funktionen.- Aufgaben.- 3 Rekurrenzgleichungen.- 3.1 Beispielprobleme.- 3.2 Elementare Methoden.- 3.3 Lösung mit erzeugenden Funktionen.- 3.4 Lineare Rekurrenzgleichungen.- 3.5 Nichtlineare Rekurrenzgleichungen.- Aufgaben.- 4 Summen.- 4.1 Elementare Methoden.- 4.2 Differenzen- und Summenoperatoren.- 4.3 Harmonische Zahlen.- 4.4 Weitere Methoden der Summenrechnung.- Aufgaben.- 5 Graphen.- 5.1 Grundbegriffe der Graphentheorie.- 5.2 Spannbäume.- 5.3 Graphen und Matrizen.- 5.4 Das Zählen von Untergraphen - Graphenpolynome.- Aufgaben.- 6 Geordnete Mengen.- 6.1 Grundbegriffe.- 6.2 Grundlegende Verbände.- 6.3 Die Inzidenzalgebra.- 6.4 Die Möbius-Funktion.- 6.5 Das Prinzip der Inklusion-Exklusion.- 6.6 Die Möbius-Inversion im Partitionsverband.- Aufgaben.- 7 Kombinatorische Klassen - Ein allgemeiner Zugang zu erzeugenden Funktionen.- 7.1 Einfache kombinatorische Klassen.- 7.2 Kombinatorische Konstruktionen.- 7.3 Kombinatorische Klassen markierter Objekte.- 8 Permutationen.- 8.1 Die Stirling-Zahlen erster Art.- 8.2 Die symmetrische Gruppe.- 8.3 Der Zyklenzeiger.- 8.4 Geschachtelte Symmetrie.- Aufgaben.- 9 Abzählen von Graphen und Bäumen.- 9.1 Graphen.- 9.2 Die Gruppe Sn(2).- 9.3 Isomorphieklassen von Graphen.- 9.4 Bäume.- 9.5 Planare und binäre Bäume.- Aufgaben.- 10 Wörter und Automaten.- 10.1 Wörter und formale Sprachen.- 10.2 Erzeugende Funktionen.- 10.3 Automaten.- 10.4 Reduktionen von Automaten.- 10.5 Unendliche Automaten.- 10.6 Erzeugende Funktionen in mehreren Variablen und mit Parametern.- Aufgaben.- 11 Ausblicke.- Lösungen der Aufgaben.- Literaturverzeichnis.- Symbolverzeichnis.- Index.
Rezensionen
"... verständliche und vielseitige Einführung mit vielen Beispielen und Übungsaufgaben samt Lösungen vorgestellt, geeignet für Studierende der Mathematik und Informatik und darüber hinaus alle, die ihr Schulwissen anreichern möchten ..." (ekz Informationsdienst, Heft 27, 2019)
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826