Field Theories in Condensed Matter Physics (eBook, ePUB)
Redaktion: Rao, Sumathi
94,95 €
inkl. MwSt.
Sofort per Download lieferbar
47 °P sammeln
Field Theories in Condensed Matter Physics (eBook, ePUB)
Redaktion: Rao, Sumathi
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The application of field theoretic techniques to problems in condensed matter physics has generated an array of concepts and mathematical techniques to attack a range of problems such as the theory of quantum phase transitions, the quantum Hall effect, and quantum wires. While concepts such as the renormalization group, topology, and bosonization h
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 12.26MB
Andere Kunden interessierten sich auch für
Ranjan ChaudhuryGateway to Condensed Matter Physics and Molecular Biophysics (eBook, ePUB)122,95 €
Tudor D. StanescuIntroduction to Topological Quantum Matter & Quantum Computation (eBook, ePUB)52,95 €
Robert RobsonFundamentals of Charged Particle Transport in Gases and Condensed Matter (eBook, ePUB)47,95 €
Oxide-Based Materials and Structures (eBook, ePUB)49,95 €
Applications of Neutron Scattering to Soft Condensed Matter (eBook, ePUB)47,95 €
Philip W. AndersonBasic Notions Of Condensed Matter Physics (eBook, ePUB)70,95 €
Navinder SinghElectronic Transport Theories (eBook, ePUB)52,95 €-
-
-
The application of field theoretic techniques to problems in condensed matter physics has generated an array of concepts and mathematical techniques to attack a range of problems such as the theory of quantum phase transitions, the quantum Hall effect, and quantum wires. While concepts such as the renormalization group, topology, and bosonization h
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 432
- Erscheinungstermin: 24. April 2019
- Englisch
- ISBN-13: 9780429530395
- Artikelnr.: 56503929
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 432
- Erscheinungstermin: 24. April 2019
- Englisch
- ISBN-13: 9780429530395
- Artikelnr.: 56503929
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Sumathi Rao Barish-Chandra Research Institute Allahabad
Preface, Introduction, 1 Quantum Many Particle Physics, Pinaki Majumdar, 1.1 Preamble, 1.2 Introduction, 1.3 Introduction to many particle physics, 1.3.1 Phases of many particle systems, 1.3.2 Quantities of physical interest, 1.3.3 Fermi and Bose liquids, 1.4 Phase transitions and broken symmetry, 1.4.1 Phase transitions and symmetry breaking, 1.4.2 Symmetry breaking and interactions in BEC, 1.5 Normal Fermi systems: model problems, 1.5.1 Neutral fermions: dilute hardcore Fermi gas, 1.5.2 Charged fermions: the electron gas, 1.6 Electrons and phonons: Migdal-Eliashberg theory, 1.6.1 Weak coupling theory: BCS, 1.6.2 The normal state: Migdal theory, 1.6.3 BCS theory: Greens function approach, 1.6.4 Superconductivity: Eliashberg theory, 1.7 Conclusion: 'field theory' and many particle physics, 2 Critical Phenomena, Somendra M. Bhattacharjee, 2.1 Preamble, 2.1.1 Large system: Thermodynamic limit, 2.2 Where is the problem?, 2.3 Recapitulation - A few formal stuff, 2.3.1 Extensivity, 2.3.2 Convexity: Stability, 2.4 Consequences of divergence, 2.5 Generalized scaling, 2.5.1 One variable: Temperature, 2.5.2 Solidarity with thermodynamics, 2.5.3 More variables: Temperature and field, 2.5.4 On exponent relations, 2.6 Relevance, irrelevance and universality, 2.7 Digression, 2.7.1 A first-order transition:
=l, 2.7.2 Example: Polymers: no "ordering", 2.8 Exponents and correlations, 2.8.1 Correlation function, 2.8.2 Relations among the exponents, 2.8.3 Length-scale dependent parameters, 2.9 Models as examples: Gaussian and
4, 2.9.1 Specific heat for the Gaussian model, 2.9.2 Cut-off and anomalous dimensions, 2.9.3 Through correlations, 2.10 Epilogue, 3 Phase Transitions and Critical Phenomena, Deepak Kumar, 3.1 Introduction, 3.2 Thermodynamic stability, 3.3 Lattice gas: mean field approximation, 3.4 Landau theory, 3.5 Spatial correlations, 3.6 Breakdown of mean field theory, 3.7 Ginzburg-Landau free energy functional, 3.8 Renormalisation group (RG), 3.9 RG for a one dimensional Ising chain, 3.10 RG for a two-dimensional Ising model, 3.11 General features of RG, 3.11.1 Irrelevant variables, 3.12 RG scaling for correlation functions, 3.13 RG for Ginzburg-Landau model, 3.13.1 Tree-level approximation, 3.13.2 Critical exponents for d > 4, 3.13.3 Anomalous dimensions, 3.14 Perturbation series for d < 4, 3.15 Generalisation to a n-component model, 4 Topological Defects, Ajit M. Srivastava, 4.1 The subject of topological defect, 4.2 What is a topological defect?, 4.2.1 Meaning of order parameter, 4.2.2 Spontaneous symmetry breakdown(SSB), 4.2.3 SSB in particle physics, 4.2.4 Order parameter space, 4.3 The domain wall, 4.3.1 Why defect?, 4.3.2 Why topological?, 4.3.3 Energy considerations, 4.4 Examples of topological defects, 4.5 Condensed matter versus particle physics, 4.6 Detailed understanding of a topological defect, 4.6.1 Free homotopy of maps, 4.6.2 Based homotopy and the fundamental group, 4.7 Classification of defects using homotopy groups, 4.8 Defect structure in liquid crystals, 4.8.1 Defects in nematics, 4.8.2 Non abelian
1 - biaxial nematics, 4.9 Formation of topological defects, 5 Introduction to Bosonization, Sumathi Rao and Diptiman Sen, 5.1 Fermi and Luttinger liquids, 5.2 Bosonization, 5.2.1 Bosonization of a fermion with one chirality, 5.2.2 Bosonisation with two chiralities, 5.2.3 Field theory near the Fermi momenta, 5.3 Correlation functions and dimensions of operators, 5.4 RG analysis of perturbed models, 5.5 Applications of bosonization, 5.6 Quantum antiferromagnetic spin 1/2 chain, 5.7 Hubbard model, 5.8 Transport in a Luttinger liquid - clean wire, 5.9 Transport in the presence of isolated impurities, 5.10 Concluding remarks, 6 Quantum Hall Effect, R. Rajaraman, 6.1 Classical Hall effect, 6.2 Quantized Hall effect, 6.3 Landau problem, 6.4 Degeneracy counting, 6.5 Laughlin wavefunction, 6.6 Plasma analogy, 6.7 Quasi-holes and their Laughlin wavefunction, 6.8 Localization physics and the QH plateaux, 6.9 Chern-Simons theory, 6.10 Vortices in the CS field and quasiholes, 6.11 Jain's theory of composite fermions, 7 Low-dimensional Quantum Spin Systems, Indrani Bose, 7.1 Introduction, 7.2 Ground and excited states, 7.3 Theorems and rigorous results for antiferromagnets, 7.3.1 Lieb-Mattis theorem, 7.3.2 Marshall's sign rule, 7.3.3 Lieb, Schultz and Mattis theorem, 7.3.4 Mermin-Wagner theorem, 7.4 Possible ground states and excitation spectra, 7.5 The Bethe Ansatz
=l, 2.7.2 Example: Polymers: no "ordering", 2.8 Exponents and correlations, 2.8.1 Correlation function, 2.8.2 Relations among the exponents, 2.8.3 Length-scale dependent parameters, 2.9 Models as examples: Gaussian and
4, 2.9.1 Specific heat for the Gaussian model, 2.9.2 Cut-off and anomalous dimensions, 2.9.3 Through correlations, 2.10 Epilogue, 3 Phase Transitions and Critical Phenomena, Deepak Kumar, 3.1 Introduction, 3.2 Thermodynamic stability, 3.3 Lattice gas: mean field approximation, 3.4 Landau theory, 3.5 Spatial correlations, 3.6 Breakdown of mean field theory, 3.7 Ginzburg-Landau free energy functional, 3.8 Renormalisation group (RG), 3.9 RG for a one dimensional Ising chain, 3.10 RG for a two-dimensional Ising model, 3.11 General features of RG, 3.11.1 Irrelevant variables, 3.12 RG scaling for correlation functions, 3.13 RG for Ginzburg-Landau model, 3.13.1 Tree-level approximation, 3.13.2 Critical exponents for d > 4, 3.13.3 Anomalous dimensions, 3.14 Perturbation series for d < 4, 3.15 Generalisation to a n-component model, 4 Topological Defects, Ajit M. Srivastava, 4.1 The subject of topological defect, 4.2 What is a topological defect?, 4.2.1 Meaning of order parameter, 4.2.2 Spontaneous symmetry breakdown(SSB), 4.2.3 SSB in particle physics, 4.2.4 Order parameter space, 4.3 The domain wall, 4.3.1 Why defect?, 4.3.2 Why topological?, 4.3.3 Energy considerations, 4.4 Examples of topological defects, 4.5 Condensed matter versus particle physics, 4.6 Detailed understanding of a topological defect, 4.6.1 Free homotopy of maps, 4.6.2 Based homotopy and the fundamental group, 4.7 Classification of defects using homotopy groups, 4.8 Defect structure in liquid crystals, 4.8.1 Defects in nematics, 4.8.2 Non abelian
1 - biaxial nematics, 4.9 Formation of topological defects, 5 Introduction to Bosonization, Sumathi Rao and Diptiman Sen, 5.1 Fermi and Luttinger liquids, 5.2 Bosonization, 5.2.1 Bosonization of a fermion with one chirality, 5.2.2 Bosonisation with two chiralities, 5.2.3 Field theory near the Fermi momenta, 5.3 Correlation functions and dimensions of operators, 5.4 RG analysis of perturbed models, 5.5 Applications of bosonization, 5.6 Quantum antiferromagnetic spin 1/2 chain, 5.7 Hubbard model, 5.8 Transport in a Luttinger liquid - clean wire, 5.9 Transport in the presence of isolated impurities, 5.10 Concluding remarks, 6 Quantum Hall Effect, R. Rajaraman, 6.1 Classical Hall effect, 6.2 Quantized Hall effect, 6.3 Landau problem, 6.4 Degeneracy counting, 6.5 Laughlin wavefunction, 6.6 Plasma analogy, 6.7 Quasi-holes and their Laughlin wavefunction, 6.8 Localization physics and the QH plateaux, 6.9 Chern-Simons theory, 6.10 Vortices in the CS field and quasiholes, 6.11 Jain's theory of composite fermions, 7 Low-dimensional Quantum Spin Systems, Indrani Bose, 7.1 Introduction, 7.2 Ground and excited states, 7.3 Theorems and rigorous results for antiferromagnets, 7.3.1 Lieb-Mattis theorem, 7.3.2 Marshall's sign rule, 7.3.3 Lieb, Schultz and Mattis theorem, 7.3.4 Mermin-Wagner theorem, 7.4 Possible ground states and excitation spectra, 7.5 The Bethe Ansatz
Preface, Introduction, 1 Quantum Many Particle Physics, Pinaki Majumdar, 1.1 Preamble, 1.2 Introduction, 1.3 Introduction to many particle physics, 1.3.1 Phases of many particle systems, 1.3.2 Quantities of physical interest, 1.3.3 Fermi and Bose liquids, 1.4 Phase transitions and broken symmetry, 1.4.1 Phase transitions and symmetry breaking, 1.4.2 Symmetry breaking and interactions in BEC, 1.5 Normal Fermi systems: model problems, 1.5.1 Neutral fermions: dilute hardcore Fermi gas, 1.5.2 Charged fermions: the electron gas, 1.6 Electrons and phonons: Migdal-Eliashberg theory, 1.6.1 Weak coupling theory: BCS, 1.6.2 The normal state: Migdal theory, 1.6.3 BCS theory: Greens function approach, 1.6.4 Superconductivity: Eliashberg theory, 1.7 Conclusion: 'field theory' and many particle physics, 2 Critical Phenomena, Somendra M. Bhattacharjee, 2.1 Preamble, 2.1.1 Large system: Thermodynamic limit, 2.2 Where is the problem?, 2.3 Recapitulation - A few formal stuff, 2.3.1 Extensivity, 2.3.2 Convexity: Stability, 2.4 Consequences of divergence, 2.5 Generalized scaling, 2.5.1 One variable: Temperature, 2.5.2 Solidarity with thermodynamics, 2.5.3 More variables: Temperature and field, 2.5.4 On exponent relations, 2.6 Relevance, irrelevance and universality, 2.7 Digression, 2.7.1 A first-order transition:
=l, 2.7.2 Example: Polymers: no "ordering", 2.8 Exponents and correlations, 2.8.1 Correlation function, 2.8.2 Relations among the exponents, 2.8.3 Length-scale dependent parameters, 2.9 Models as examples: Gaussian and
4, 2.9.1 Specific heat for the Gaussian model, 2.9.2 Cut-off and anomalous dimensions, 2.9.3 Through correlations, 2.10 Epilogue, 3 Phase Transitions and Critical Phenomena, Deepak Kumar, 3.1 Introduction, 3.2 Thermodynamic stability, 3.3 Lattice gas: mean field approximation, 3.4 Landau theory, 3.5 Spatial correlations, 3.6 Breakdown of mean field theory, 3.7 Ginzburg-Landau free energy functional, 3.8 Renormalisation group (RG), 3.9 RG for a one dimensional Ising chain, 3.10 RG for a two-dimensional Ising model, 3.11 General features of RG, 3.11.1 Irrelevant variables, 3.12 RG scaling for correlation functions, 3.13 RG for Ginzburg-Landau model, 3.13.1 Tree-level approximation, 3.13.2 Critical exponents for d > 4, 3.13.3 Anomalous dimensions, 3.14 Perturbation series for d < 4, 3.15 Generalisation to a n-component model, 4 Topological Defects, Ajit M. Srivastava, 4.1 The subject of topological defect, 4.2 What is a topological defect?, 4.2.1 Meaning of order parameter, 4.2.2 Spontaneous symmetry breakdown(SSB), 4.2.3 SSB in particle physics, 4.2.4 Order parameter space, 4.3 The domain wall, 4.3.1 Why defect?, 4.3.2 Why topological?, 4.3.3 Energy considerations, 4.4 Examples of topological defects, 4.5 Condensed matter versus particle physics, 4.6 Detailed understanding of a topological defect, 4.6.1 Free homotopy of maps, 4.6.2 Based homotopy and the fundamental group, 4.7 Classification of defects using homotopy groups, 4.8 Defect structure in liquid crystals, 4.8.1 Defects in nematics, 4.8.2 Non abelian
1 - biaxial nematics, 4.9 Formation of topological defects, 5 Introduction to Bosonization, Sumathi Rao and Diptiman Sen, 5.1 Fermi and Luttinger liquids, 5.2 Bosonization, 5.2.1 Bosonization of a fermion with one chirality, 5.2.2 Bosonisation with two chiralities, 5.2.3 Field theory near the Fermi momenta, 5.3 Correlation functions and dimensions of operators, 5.4 RG analysis of perturbed models, 5.5 Applications of bosonization, 5.6 Quantum antiferromagnetic spin 1/2 chain, 5.7 Hubbard model, 5.8 Transport in a Luttinger liquid - clean wire, 5.9 Transport in the presence of isolated impurities, 5.10 Concluding remarks, 6 Quantum Hall Effect, R. Rajaraman, 6.1 Classical Hall effect, 6.2 Quantized Hall effect, 6.3 Landau problem, 6.4 Degeneracy counting, 6.5 Laughlin wavefunction, 6.6 Plasma analogy, 6.7 Quasi-holes and their Laughlin wavefunction, 6.8 Localization physics and the QH plateaux, 6.9 Chern-Simons theory, 6.10 Vortices in the CS field and quasiholes, 6.11 Jain's theory of composite fermions, 7 Low-dimensional Quantum Spin Systems, Indrani Bose, 7.1 Introduction, 7.2 Ground and excited states, 7.3 Theorems and rigorous results for antiferromagnets, 7.3.1 Lieb-Mattis theorem, 7.3.2 Marshall's sign rule, 7.3.3 Lieb, Schultz and Mattis theorem, 7.3.4 Mermin-Wagner theorem, 7.4 Possible ground states and excitation spectra, 7.5 The Bethe Ansatz
=l, 2.7.2 Example: Polymers: no "ordering", 2.8 Exponents and correlations, 2.8.1 Correlation function, 2.8.2 Relations among the exponents, 2.8.3 Length-scale dependent parameters, 2.9 Models as examples: Gaussian and
4, 2.9.1 Specific heat for the Gaussian model, 2.9.2 Cut-off and anomalous dimensions, 2.9.3 Through correlations, 2.10 Epilogue, 3 Phase Transitions and Critical Phenomena, Deepak Kumar, 3.1 Introduction, 3.2 Thermodynamic stability, 3.3 Lattice gas: mean field approximation, 3.4 Landau theory, 3.5 Spatial correlations, 3.6 Breakdown of mean field theory, 3.7 Ginzburg-Landau free energy functional, 3.8 Renormalisation group (RG), 3.9 RG for a one dimensional Ising chain, 3.10 RG for a two-dimensional Ising model, 3.11 General features of RG, 3.11.1 Irrelevant variables, 3.12 RG scaling for correlation functions, 3.13 RG for Ginzburg-Landau model, 3.13.1 Tree-level approximation, 3.13.2 Critical exponents for d > 4, 3.13.3 Anomalous dimensions, 3.14 Perturbation series for d < 4, 3.15 Generalisation to a n-component model, 4 Topological Defects, Ajit M. Srivastava, 4.1 The subject of topological defect, 4.2 What is a topological defect?, 4.2.1 Meaning of order parameter, 4.2.2 Spontaneous symmetry breakdown(SSB), 4.2.3 SSB in particle physics, 4.2.4 Order parameter space, 4.3 The domain wall, 4.3.1 Why defect?, 4.3.2 Why topological?, 4.3.3 Energy considerations, 4.4 Examples of topological defects, 4.5 Condensed matter versus particle physics, 4.6 Detailed understanding of a topological defect, 4.6.1 Free homotopy of maps, 4.6.2 Based homotopy and the fundamental group, 4.7 Classification of defects using homotopy groups, 4.8 Defect structure in liquid crystals, 4.8.1 Defects in nematics, 4.8.2 Non abelian
1 - biaxial nematics, 4.9 Formation of topological defects, 5 Introduction to Bosonization, Sumathi Rao and Diptiman Sen, 5.1 Fermi and Luttinger liquids, 5.2 Bosonization, 5.2.1 Bosonization of a fermion with one chirality, 5.2.2 Bosonisation with two chiralities, 5.2.3 Field theory near the Fermi momenta, 5.3 Correlation functions and dimensions of operators, 5.4 RG analysis of perturbed models, 5.5 Applications of bosonization, 5.6 Quantum antiferromagnetic spin 1/2 chain, 5.7 Hubbard model, 5.8 Transport in a Luttinger liquid - clean wire, 5.9 Transport in the presence of isolated impurities, 5.10 Concluding remarks, 6 Quantum Hall Effect, R. Rajaraman, 6.1 Classical Hall effect, 6.2 Quantized Hall effect, 6.3 Landau problem, 6.4 Degeneracy counting, 6.5 Laughlin wavefunction, 6.6 Plasma analogy, 6.7 Quasi-holes and their Laughlin wavefunction, 6.8 Localization physics and the QH plateaux, 6.9 Chern-Simons theory, 6.10 Vortices in the CS field and quasiholes, 6.11 Jain's theory of composite fermions, 7 Low-dimensional Quantum Spin Systems, Indrani Bose, 7.1 Introduction, 7.2 Ground and excited states, 7.3 Theorems and rigorous results for antiferromagnets, 7.3.1 Lieb-Mattis theorem, 7.3.2 Marshall's sign rule, 7.3.3 Lieb, Schultz and Mattis theorem, 7.3.4 Mermin-Wagner theorem, 7.4 Possible ground states and excitation spectra, 7.5 The Bethe Ansatz







