Fundamentals in Handwriting Recognition (eBook, PDF)
Redaktion: Impedovo, Sebastiano
72,95 €
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
72,95 €
Als Download kaufen
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
36 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
72,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
36 °P sammeln
Fundamentals in Handwriting Recognition (eBook, PDF)
Redaktion: Impedovo, Sebastiano
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This NATO ASI volume focuses on the fundamental tools and ideas that are generally used in the computer recognition of handwriting. The most important algorithms and the commonest databases and devices are presented.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 44.47MB
Andere Kunden interessierten sich auch für
Neural Nets WIRN VIETRI-98 (eBook, PDF)72,95 €
BMVC92 (eBook, PDF)40,95 €
Zhi-Qiang LiuHandwriting Recognition (eBook, PDF)72,95 €
Computer Vision (eBook, PDF)40,95 €
Artificial Neural Networks in Pattern Recognition (eBook, PDF)40,95 €
Artificial Neural Networks - ICANN 2010 (eBook, PDF)40,95 €
Computational Intelligence Paradigms in Advanced Pattern Classification (eBook, PDF)72,95 €-
-
-
This NATO ASI volume focuses on the fundamental tools and ideas that are generally used in the computer recognition of handwriting. The most important algorithms and the commonest databases and devices are presented.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 496
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642786464
- Artikelnr.: 53091732
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 496
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642786464
- Artikelnr.: 53091732
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1: Introduction and overview of field.- Frontiers in handwriting recognition.- 2: Handwritten character recognition.- Historical review of theory and practice of handwritten character recognition.- Automatic recognition of handwritten characters.- Learning, representation, understanding and recognition of characters and words - an intelligent approach.- Digital transforms in handwriting recognition.- Pattern recognition with optimal margin classifiers.- 3: Handwritten word recognition.- On the robustness of recognition of degraded line images.- Invariant handwriting features useful in cursive script recognition.- Off-line recognition of bad quality handwritten words using prototypes.- Handwriting recognition by statistical methods.- Towards a visual recognition of cursive script.- A hierarchical handwritten word segmentation.- 4: Contextual methods in handwriting recognition.- Cursive words recognition: methods and strategies.- Hidden Markov models in handwriting recognition.- Language-level syntactic and semantic constraints applied to visual word recognition.- Verification of handwritten British postcodes using address features.- Improvement of OCR by language model.- An approximate string matching method for handwriting recognition post-processing using a dictionary.- 5: Neural networks in handwriting recognition.- Neural-net computing for machine recognition of handwritten English language text.- Cooperation of feedforward neural networks for handwritten digit recognition.- Normalisation and preprocessing for a recurrent network off-line handwriting recognition system.- 6: Architectures for handwriting.- Architectures for handwriting recognition.- 7: Databases for handwriting recognition.- Large database organization for document images.- 8: Signature recognitionand verification.- A model-based dynamic signature verification system.- Algorithms for signature verification.- Handwritten signature verification: a global approach.- 9: Application of handwriting recognition.- Total approach for practical character recognition system development.- A pen-based music editor.
1: Introduction and overview of field.- Frontiers in handwriting recognition.- 2: Handwritten character recognition.- Historical review of theory and practice of handwritten character recognition.- Automatic recognition of handwritten characters.- Learning, representation, understanding and recognition of characters and words - an intelligent approach.- Digital transforms in handwriting recognition.- Pattern recognition with optimal margin classifiers.- 3: Handwritten word recognition.- On the robustness of recognition of degraded line images.- Invariant handwriting features useful in cursive script recognition.- Off-line recognition of bad quality handwritten words using prototypes.- Handwriting recognition by statistical methods.- Towards a visual recognition of cursive script.- A hierarchical handwritten word segmentation.- 4: Contextual methods in handwriting recognition.- Cursive words recognition: methods and strategies.- Hidden Markov models in handwriting recognition.- Language-level syntactic and semantic constraints applied to visual word recognition.- Verification of handwritten British postcodes using address features.- Improvement of OCR by language model.- An approximate string matching method for handwriting recognition post-processing using a dictionary.- 5: Neural networks in handwriting recognition.- Neural-net computing for machine recognition of handwritten English language text.- Cooperation of feedforward neural networks for handwritten digit recognition.- Normalisation and preprocessing for a recurrent network off-line handwriting recognition system.- 6: Architectures for handwriting.- Architectures for handwriting recognition.- 7: Databases for handwriting recognition.- Large database organization for document images.- 8: Signature recognitionand verification.- A model-based dynamic signature verification system.- Algorithms for signature verification.- Handwritten signature verification: a global approach.- 9: Application of handwriting recognition.- Total approach for practical character recognition system development.- A pen-based music editor.







