The first volume deals with the atomic and magnetic structure and dynamics of solids, the second with those electronic properties that can be understood in the one-particle approximation, and the third with the effects due to interactions and correlations between electrons.
This volume is devoted to the electronic properties of metals and semiconductors in the independent-electron approximation. After a brief discussion of the free-electron models by Drude and Sommerfeld, the methods for calculating and measuring the band structure of Bloch electrons moving in the periodic potential of the crystal are presented. The dynamics of electrons in applied electric and magnetic fields is treated in the semiclassical approximation. The effects due to the quantization of the energy levels in strong magnetic field are also discussed. The overview of the transport and optical properties of metals and semiconductors is followed by a phenomenological description of superconductivity. The last chapter deals with the physics of semiconductor devices.
This comprehensive treatment provides ample material for upper-level undergraduate and graduate courses. It will also be a valuable reference for researchers in the field of condensed matter physics.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The second volume is centered on the highly mobile portion of a solid, the electrons. ... senior students in physics will be able to tutor themselves through reading this volume. The text will also be very useful to a non-specialist in the field of electronic properties or to a research scientist who wants to get a basic introduction to the field. ... second volume of this series lives up to our expectations and will be very useful to students, teachers, and scientists in solid-state physics." (Fernande Grandjean and Gary J. Long, Belgian Physical Society Magazine, Issue 3, 2010)