Ernst-Albrecht Reinsch
Mathematik für Chemiker (eBook, PDF)
Methoden, Beispiele, Anwendungen und Aufgaben
44,99 €**
26,96 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar13 °P sammeln
Ernst-Albrecht Reinsch
Mathematik für Chemiker (eBook, PDF)
Methoden, Beispiele, Anwendungen und Aufgaben
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 45.41MB
Andere Kunden interessierten sich auch für
Notker RöschMathematik für Chemiker (eBook, PDF)22,47 €
Manfred StockhausenMathematik für Chemiker (eBook, PDF)38,66 €
H. AmannMathematik für Chemiker (eBook, PDF)33,26 €
Willi TörnigNumerische Mathematik für Ingenieure und Physiker (eBook, PDF)36,99 €
Karl JugMathematik in der Chemie (eBook, PDF)38,66 €
The Quantum Theory of Atoms in Molecules (eBook, PDF)216,99 €
Gert BöhmeAnalysis 1 (eBook, PDF)39,99 €-
-
-
Wie kann man chemische Probleme mathematisch beschreiben und lösen? In Theorie, Anwendung und Beispiel zeigt dieses Buch Studierenden die erforderlichen mathematischen Methoden praxisbezogen und verständlich. Viele Übungsaufgaben machen fit für Prüfung und Praxis.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 536
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783322800602
- Artikelnr.: 53123549
- Verlag: Vieweg+Teubner Verlag
- Seitenzahl: 536
- Erscheinungstermin: 12. März 2013
- Deutsch
- ISBN-13: 9783322800602
- Artikelnr.: 53123549
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Prof. Dr. Ernst-Albrecht Reinsch, Universität Frankfurt
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.
1 Zahlen.- 1.1 Grundbegriffe der Mengenlehre.- 1.2 Reelle Zahlen.- 1.3 Komplexe Zahlen.- 1.4 Polynome und ihre Nullstellen.- 1.5 Kombinatorik.- 2 Vektorrechnung.- 2.1 Vektoren.- 2.2 Produkte von Vektoren.- 2.3 Lineare Abhängigkeit und Basistransformation.- 2.4 Matrizen.- 2.5 Determinanten.- 2.6 Lineare Gleichungssysteme.- 2.7 Eigenwertprobleme.- 2.8 Tensoren und eine Schlußbemerkung.- 3 Analytische Geometrie.- 3.1 Die analytische Darstellung geometrischer Gebilde.- 3.2 Abbildungen von Punktmengen, Koordinatentransformationen.- 4 Funktionen, Folgen und Reihen.- 4.1 Allgemeines über Funktionen.- 4.2 Einige wichtige Funktionen mit einer oder zwei Veränderlichen.- 4.3 Grenzwerte.- 5 Differentialrechnung.- 5.1 Die Ableitung von Funktionen mit einer Variablen.- 5.2 Singuläre Stellen; Nullstellen; Extrema.- 5.3 Funktionen mit mehreren Variablen.- 5.4 Partielle Ableitungen als Komponenten eines Vektors.- 6 Integralrechnung.- 6.1 Bestimmte und unbestimmte Integrale.- 6.2 Integrationsregeln.- 6.3 Ergänzungen.- 6.4 Kurvenintegrale.- 6.5 Bereichsintegrale.- 7 Taylorsche Reihen und Analytische Funktionen.- 7.1 Taylorsche Reihen.- 7.2 Analytische Funktionen.- 8 Entwicklung nach Funktionensystemen; Fouriertransformation.- 8.1 Funktionen als Vektoren in unendlich dimensionalen Räumen.- 8.2 Fourieranalyse.- 8.3 Fouriertransformation.- 8.4 Lineare Operatoren in Funktionenräumen.- 8.5 Wellenmechanik.- 9 Differentialgleichungen.- 9.1 Einführung.- 9.2 Differentialgleichungen erster Ordnung.- 9.3 Systeme von Differentialgleichungen erster Ordnung.- 9.4 Lineare Differentialgleichungen zweiter Ordnung.- 9.5 Partielle Differentialgleichungen.- 10 Gruppentheorie.- 10.1 Gruppen.- 10.2 Darstellungstheorie.- 11 Versuchsauswertung und Fehlerrechnung.- 11.1 Wahrscheinlichkeitsdichten.- 11.2Meßreihen.- 11.3 Fehlerfortpflanzung.- 11.4 Ausgleichsfunktionen.- 11.5 Computer-Programme.- A Grundwissen.- A.1 Algebra.- A.2 Trigonometrie.- B Lösungen der Übungsaufgaben.







