Medical Statistics for Cancer Studies (eBook, ePUB)
Alle Infos zum eBook verschenken
Medical Statistics for Cancer Studies (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Hier können Sie sich einloggen

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Cancer is a dreaded disease. One in two people will be diagnosed with cancer within their lifetime. Medical Statistics for Cancer Studies shows how cancer data can be analysed in a variety of ways, covering cancer clinical trial data, epidemiological data, biological data, and genetic data. It gives some background in cancer biology and genetics, followed by detailed overviews of survival analysis, clinical trials, regression analysis, epidemiology, meta-analysis, biomarkers, and cancer informatics. It includes lots of examples using real data from the author's many years of experience working…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Trevor F. CoxMedical Statistics for Cancer Studies (eBook, PDF)46,95 €
- Catherine LegrandAdvanced Survival Models (eBook, ePUB)46,95 €
- Introduction to Statistical Methods for Clinical Trials (eBook, ePUB)91,95 €
- Nusrat RabbeeBiomarker Analysis in Clinical Trials with R (eBook, ePUB)45,95 €
- Ding-Geng Chen (Din)Clinical Trial Data Analysis Using R and SAS (eBook, ePUB)49,95 €
- Catherine LegrandAdvanced Survival Models (eBook, PDF)46,95 €
- Robert GrantBayesian Meta-Analysis (eBook, ePUB)45,95 €
-
-
-
Features:
- A broad and accessible overview of statistical methods in cancer research
- Necessary background in cancer biology and genetics
- Details of statistical methodology with minimal algebra
- Many examples using real data from cancer clinical trials
- Appendix giving statistics revision.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 333
- Erscheinungstermin: 23. Juni 2022
- Englisch
- ISBN-13: 9781000601152
- Artikelnr.: 63912237
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 333
- Erscheinungstermin: 23. Juni 2022
- Englisch
- ISBN-13: 9781000601152
- Artikelnr.: 63912237
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.
Cancer Biology and Genetics for Non-Biologists. 2.1. Cells. 2.2. DNA,
Genes, RNA and Proteins. 2.3. Cancer - DNA Gone Wrong. 2.4. Cancer
Treatments. 2.5. Measuring Cancer in the Patient. 3. Survival Analysis.
3.1. The Amazing Survival Equations. 3.2. Non-parametric Estimation of
Survival Curves. 3.3. Fitting Parametric Survival Curves to Data. 3.4.
Comparing Two Survival Distributions. 3.5. The ESPAC4-Trial. 3.6. Comparing
Two Parametric Survival Curves. 4. Designing and Running a Clinical Trial.
4.1. Types of Trials and Studies. 4.2. Clinical Trials. 5. Regression
Analysis for Survival Data. 5.1. A Weibull Parametric Regression Model.
5.2. Cox Proportional Hazards Model. 5.3. Accelerated Failure Time (AFT)
Models. 5.4. Proportional Odds Models. 5.5. Parametric Survival
Distributions for PH and AFT Models. 5.6. Flexible Parametric Models. 6.
Clinical Trials: The Statistician's Role. 6.1. Sample Size Calculation.
6.2. Examples of Sample Size Calculations; Phases I to III. 6.3. Group
Sequential Designs. 6.4. More Statistical Tasks for Clinical Trials. 7.
Cancer Epidemiology. 7.1. Measuring Cancer. 7.2. Cancer Statistics for
Countries. 7.3. Cohort Studies. 7.4. Case-control Studies. 7.5.
Cross-sectional Studies. 7.6. Spatial Epidemiology. 8. Meta-Analysis. 8.1.
How to Carry Out a Systematic Review. 8.2. Fixed Effects Model. 8.3. Random
Effects Model. 8.4. Bayesian Meta-analysis. 8.5. Network Meta-analysis.
8.6. Individual Patient Data. 9. Cancer Biomarkers. 9.1. Diagnostic
Biomarkers. 9.2. Prognostic Biomarkers. 9.3. Predictive Biomarkers for
Pancreatic Cancer. 9.4. Biomarker Trial Design. 10. Cancer Informatics.
10.1. Producing Genetic Data. 10.2. Analysis of Microarray Data. 10.3.
Pre-processing NGS Data. 10.4. TCGA-KIRC: Renal Clear Cell Carcinoma.