Neural Information Processing (eBook, PDF)
31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part III
Redaktion: Mahmud, Mufti; Tanveer, M.; Doborjeh, Zohreh; Leung, Andrew Chi Sing; Wong, Kevin; Doborjeh, Maryam
59,95 €
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
59,95 €
Als Download kaufen
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
30 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
59,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
30 °P sammeln
Neural Information Processing (eBook, PDF)
31st International Conference, ICONIP 2024, Auckland, New Zealand, December 2-6, 2024, Proceedings, Part III
Redaktion: Mahmud, Mufti; Tanveer, M.; Doborjeh, Zohreh; Leung, Andrew Chi Sing; Wong, Kevin; Doborjeh, Maryam
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024. The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 54.49MB
Andere Kunden interessierten sich auch für
- Neural Information Processing (eBook, PDF)59,95 €
- Neural Information Processing (eBook, PDF)73,95 €
- Neural Information Processing (eBook, PDF)73,95 €
- Neural Information Processing (eBook, PDF)73,95 €
- Neural Information Processing (eBook, PDF)53,95 €
- Neural Information Processing (eBook, PDF)73,95 €
- Neural Information Processing (eBook, PDF)59,95 €
-
-
-
The eleven-volume set LNCS 15286-15296 constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024. The 318 regular papers presented in the proceedings set were carefully reviewed and selected from 1301 submissions. They focus on four main areas, namely: theory and algorithms; cognitive neurosciences; human-centered computing; and applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Nature Singapore
- Seitenzahl: 416
- Erscheinungstermin: 23. Juni 2025
- Englisch
- ISBN-13: 9789819665822
- Artikelnr.: 74628987
- Verlag: Springer Nature Singapore
- Seitenzahl: 416
- Erscheinungstermin: 23. Juni 2025
- Englisch
- ISBN-13: 9789819665822
- Artikelnr.: 74628987
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
FreeFlow: A Unified Viewpoint on Diffusion Probabilistic Models via Optimal Transport and Fluid Mechanics.- Optimizing CNNs with Gram Schmidt Non-Iterative Learning for Image Recognition.- Improving Multilingual Speech Recognition with Tucker-compressed Mixture of LoRAs.- MetaFix: Semi-Supervised Model Agnostic Meta-Learning using Consistency Regularization.- Towards Private and Fair Machine Learning: Group-Specific Differentially Private Stochastic Gradient Descent with Threshold Optimization.- LogMoE: Optimizing Mixture of Experts for Log Anomaly Detection via Knowledge Distillation.- Cross-Domain Few-Shot Learning with Equiangular Embedding and Dynamic Adversarial Augmentation.- -Net: An Unsupervised Model for Online Graph Time-Series Denoising.- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models.- Aero-engine Condition-Based Maintenance Planning Using Reinforcement Learning.- Multi-Timescale Processing with Heterogeneous Assembly Echo StateNetworks.- ADERec: Adaptive Data Augmentation Sequence Recommendation Based on Dual Network Architecture.- Pruning neural network parameters using recurrent neural networks.- MA-Mamba: Multi-Agent Reinforcement Learning with State Space Model.- Decentralized Extension for Centralized Multi-Agent Reinforcement Learning via Online Distillation.- Advancing RVFL networks: Robust classification with the HawkEye loss function.- An Enhanced MILP-based Verifier for Adversary Robustness of Neural Networks.- Hide-and-Seek GANs for Generation with Limited Data.- Unsupervised Robust Hypergraph Correlation Hashing for MultimediaRetrieval.- Emotional Atmosphere Soft Label for Emotion Recognition in Conversations.- CCATS: Moving Forward with Class-Conditional Time Series Generation.- M3ixTS: Mixing of Multi-patch and Multi-view For Time Series Forecasting.- CSTFormer: Cross Spatial-Temporal Learning Transformer withDynamic Sign Language Recognition through an Augmented Reality Environment.- MmFormer: A Novel Multi-Scale and Multi-Period Transformer Model for Irregular periodic Network Traffc Prediction.- Time Series Anomaly Detection via Temporal Dependencies and Multivariate Correlations Integrating.- Transformer-Based Long Time Series Forecasting with Decoupled Information Extraction and Information Complementarity.
FreeFlow: A Unified Viewpoint on Diffusion Probabilistic Models via Optimal Transport and Fluid Mechanics.- Optimizing CNNs with Gram Schmidt Non-Iterative Learning for Image Recognition.- Improving Multilingual Speech Recognition with Tucker-compressed Mixture of LoRAs.- MetaFix: Semi-Supervised Model Agnostic Meta-Learning using Consistency Regularization.- Towards Private and Fair Machine Learning: Group-Specific Differentially Private Stochastic Gradient Descent with Threshold Optimization.- LogMoE: Optimizing Mixture of Experts for Log Anomaly Detection via Knowledge Distillation.- Cross-Domain Few-Shot Learning with Equiangular Embedding and Dynamic Adversarial Augmentation.- -Net: An Unsupervised Model for Online Graph Time-Series Denoising.- On Learnable Parameters of Optimal and Suboptimal Deep Learning Models.- Aero-engine Condition-Based Maintenance Planning Using Reinforcement Learning.- Multi-Timescale Processing with Heterogeneous Assembly Echo StateNetworks.- ADERec: Adaptive Data Augmentation Sequence Recommendation Based on Dual Network Architecture.- Pruning neural network parameters using recurrent neural networks.- MA-Mamba: Multi-Agent Reinforcement Learning with State Space Model.- Decentralized Extension for Centralized Multi-Agent Reinforcement Learning via Online Distillation.- Advancing RVFL networks: Robust classification with the HawkEye loss function.- An Enhanced MILP-based Verifier for Adversary Robustness of Neural Networks.- Hide-and-Seek GANs for Generation with Limited Data.- Unsupervised Robust Hypergraph Correlation Hashing for MultimediaRetrieval.- Emotional Atmosphere Soft Label for Emotion Recognition in Conversations.- CCATS: Moving Forward with Class-Conditional Time Series Generation.- M3ixTS: Mixing of Multi-patch and Multi-view For Time Series Forecasting.- CSTFormer: Cross Spatial-Temporal Learning Transformer withDynamic Sign Language Recognition through an Augmented Reality Environment.- MmFormer: A Novel Multi-Scale and Multi-Period Transformer Model for Irregular periodic Network Traffc Prediction.- Time Series Anomaly Detection via Temporal Dependencies and Multivariate Correlations Integrating.- Transformer-Based Long Time Series Forecasting with Decoupled Information Extraction and Information Complementarity.