Structural Health Monitoring & Machine Learning, Vol. 12 (eBook, PDF)
Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics 2025 Redaktion: Damiano, Brian; Worden, Keith; De Luca, Antonio; Moaveni, Babak
Sollten wir den Preis dieses Artikels vor dem Erscheinungsdatum senken, werden wir dir den Artikel bei der Auslieferung automatisch zum günstigeren Preis berechnen.
Structural Health Monitoring & Machine Learning, Vol. 12 (eBook, PDF)
Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics 2025 Redaktion: Damiano, Brian; Worden, Keith; De Luca, Antonio; Moaveni, Babak
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Structural Health Monitoring & Machine Learning, Volume 12: Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics, 2025 , the twelfth volume of twelve from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Structural Health Monitoring, including papers on: Bayesian Methods for Model Inference | Health Monitoring using dynamic measurements | Health Monitoring using Digital Twinning | SHM using Machine Learning | Case…mehr
Structural Health Monitoring & Machine Learning, Volume 12: Proceedings of the 43rd IMAC, A Conference and Exposition on Structural Dynamics, 2025, the twelfth volume of twelve from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Structural Health Monitoring, including papers on:
Bayesian Methods for Model Inference
Health Monitoring using dynamic measurements
Health Monitoring using Digital Twinning
SHM using Machine Learning
Case studies of SHM on real-world dynamic systems
Other Innovative SHM Methods
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Brian Damiano, Babak Moaveni, Antonio De Luca, Keith Worden
Inhaltsangabe
1. Theoretical Foundations and Practical Applications of Damage Detection Using Autocovariance Functions 2. On the Real Time Tightness Measurement of Complex Shaped Flanges 3. Parameter Rejection in Sensitivity-based Model Updating using Output Feedback Eigenstructure Assignment 4. Structural Health Monitoring of a Ferry Quay: Instrumentation and Impact of Tidal Levels on Modal Parameters 5. Outcomes from Field Measurements on the Magerholm Ferry Quay: System Identification, Finite Element Model Updating and Sensitivity Analysis 6. A Robust Data-Driven Algorithm for Early Damage Detection in Structural Health Monitoring 7. Real-Time Structural Health Assessment of a Tension Rod Assembly Using Machine Learning 8. Multi-Bridge Indirect Structural Health Monitoring: Leveraging Big Data and Drive-By Crowdsensing Techniques 9. A Comparative Study of Feature Selection Methods for Wind Turbine Gearbox Bearing Fault Prognosis 10. Damage Identification on Gear Drivetrains Using Neural Networks Trained by High-Fidelity Multibody Simulation Data 11. Advanced Condition Monitoring framework for CFRP Gear Drivetrains Using Machine Learning and Multibody Dynamics Simulations 12. On the use of Statistical Learning Theory for model selection in Structural Health Monitoring 13. Full-field Measurements for Anomaly Detection of Mechanical Systems using Convolutional Neural Networks and LSTM Networks 14. A Generative Modeling Approach for the Translation of Operational Variables to Short-term Vibrations 15. Effective Structural Health Monitoring of Rotating Propellers using Asynchronous Neuromorphic Tracking 16. Estimating Damage Detection of an Aircraft Component with Machine Learning Models 17. Physics-Informed Machine Learning for Advanced Structural Damage Detection and Localization 18. Damage Detection Strategy Based on PCA/Mode-Shapes Developed on a Laboratory Truss Girder Subjected to Environmental Variations
1. Theoretical Foundations and Practical Applications of Damage Detection Using Autocovariance Functions 2. On the Real Time Tightness Measurement of Complex Shaped Flanges 3. Parameter Rejection in Sensitivity-based Model Updating using Output Feedback Eigenstructure Assignment 4. Structural Health Monitoring of a Ferry Quay: Instrumentation and Impact of Tidal Levels on Modal Parameters 5. Outcomes from Field Measurements on the Magerholm Ferry Quay: System Identification, Finite Element Model Updating and Sensitivity Analysis 6. A Robust Data-Driven Algorithm for Early Damage Detection in Structural Health Monitoring 7. Real-Time Structural Health Assessment of a Tension Rod Assembly Using Machine Learning 8. Multi-Bridge Indirect Structural Health Monitoring: Leveraging Big Data and Drive-By Crowdsensing Techniques 9. A Comparative Study of Feature Selection Methods for Wind Turbine Gearbox Bearing Fault Prognosis 10. Damage Identification on Gear Drivetrains Using Neural Networks Trained by High-Fidelity Multibody Simulation Data 11. Advanced Condition Monitoring framework for CFRP Gear Drivetrains Using Machine Learning and Multibody Dynamics Simulations 12. On the use of Statistical Learning Theory for model selection in Structural Health Monitoring 13. Full-field Measurements for Anomaly Detection of Mechanical Systems using Convolutional Neural Networks and LSTM Networks 14. A Generative Modeling Approach for the Translation of Operational Variables to Short-term Vibrations 15. Effective Structural Health Monitoring of Rotating Propellers using Asynchronous Neuromorphic Tracking 16. Estimating Damage Detection of an Aircraft Component with Machine Learning Models 17. Physics-Informed Machine Learning for Advanced Structural Damage Detection and Localization 18. Damage Detection Strategy Based on PCA/Mode-Shapes Developed on a Laboratory Truss Girder Subjected to Environmental Variations
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826