178,99 €
inkl. MwSt.
Versandkostenfrei*
Erscheint vorauss. 1. März 2026
payback
89 °P sammeln
  • Broschiertes Buch

Lithium-ion Battery Safety provides an in-depth exploration of the safety challenges associated with lithium-ion batteries, focusing on thermal runaway-a critical and potentially catastrophic failure mode. It systematically analyzes the mechanisms, characteristics, and influencing factors of thermal runaway under various abusive conditions, such as mechanical, electrical, and thermal stresses. The book also examines the propagation of thermal runaway, its derivative disasters, and effective countermeasures, offering valuable insights into prevention, mitigation, and safety management to…mehr

Produktbeschreibung
Lithium-ion Battery Safety provides an in-depth exploration of the safety challenges associated with lithium-ion batteries, focusing on thermal runaway-a critical and potentially catastrophic failure mode. It systematically analyzes the mechanisms, characteristics, and influencing factors of thermal runaway under various abusive conditions, such as mechanical, electrical, and thermal stresses. The book also examines the propagation of thermal runaway, its derivative disasters, and effective countermeasures, offering valuable insights into prevention, mitigation, and safety management to safeguard lives and property while supporting the sustainable development of the new energy industry. This book is an essential resource for researchers, engineers, industry professionals, policymakers, and students involved in battery technology, energy storage, and safety management. It aims to enhance understanding, promote industry-standard safety practices, support technological innovation, and contribute to the sustainable growth of the new energy ecosystem. Whether you are involved in battery design, safety regulation, or industry application, this comprehensive guide will equip you with the knowledge needed to prevent accidents and advance safer energy storage solutions. This book also explores the fundamental composition and working principles of lithium-ion batteries, providing a thorough understanding of the mechanisms and triggers of thermal runaway, as well as the associated hazards such as fires, explosions, and toxic gas releases. It emphasizes the importance of examining current safety standards, research methodologies-including experimental and simulation approaches-and the influence of factors like battery design, aging, and environmental conditions on safety. Moreover, it highlights the development of effective countermeasures, such as thermal management systems, early warning technologies, physical barriers, and fire suppression techniques. Addressing existing safety gaps, fostering technological innovation, and establishing comprehensive industry standards are essential steps toward improving safety, supporting sustainable industry growth, and guiding policy development.
Autorenporträt
Zhirong Wang is the Dean of the College of Emergency Management at Nanjing Tech University, and the Director of the Key Laboratory of New Energy Storage Battery Safety and Emergency Technology in the petroleum and chemical industry. He has won the China Youth Science and Technology Award and the honor of leading talents in science and technology innovation under the National Ten Thousand Talents Plan. Additionally, he is honored as a Distinguished Professor of Jiangsu Province, receiving special funding for his contributions. He has been working at Nanjing Tech University since 2005. From 2013 to 2014, he was a visiting professor at the University of Maryland, College Park, Maryland, USA. His research interests include fire and explosion prevention and control, hazardous chemical safety, lithium-ion battery safety, hydrogen safety, etc. He has directed over 20 research projects, including one key project and one sub-project under the National Key R&D Program, five projects funded by the National Natural Science Foundation, and provincial and ministerial research projects. He has published over 200 SCI papers as the first author or corresponding author in renowned domestic and international journals, affirming his leadership in emergency management research. He has been authorized 5 international patents, and more than 40 Chinese invention patents. His extensive work has earned him prestigious awards such as the National Technological Progress Second Prize, the first prize of Invention and Innovation of China Association of Invention(gold medal), and the first prize of Science and Technology Progress of China, Petroleum and Chemical Industry Federation.