- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An introduction to rough path theory and its applications to stochastic analysis, written for graduate students and researchers.
Andere Kunden interessierten sich auch für
- Terry J. LyonsDifferential Equations Driven by Rough Paths30,99 €
- J. J. DuistermaatMultidimensional Real Analysis I74,99 €
- Yuichiro KakiharaMultidimensional Second Order Stochastic Processes87,99 €
- Ola AhmadStochastic representation and analysis of rough surface topography47,99 €
- Kiyosi ItoDiffusion Processes and their Sample Paths43,99 €
- Paul FieguthStatistical Image Processing and Multidimensional Modeling112,99 €
- Bernard RoynettePenalising Brownian Paths39,99 €
-
-
-
An introduction to rough path theory and its applications to stochastic analysis, written for graduate students and researchers.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 672
- Erscheinungstermin: 4. Februar 2010
- Englisch
- Abmessung: 235mm x 157mm x 40mm
- Gewicht: 1108g
- ISBN-13: 9780521876070
- ISBN-10: 0521876079
- Artikelnr.: 28524296
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 672
- Erscheinungstermin: 4. Februar 2010
- Englisch
- Abmessung: 235mm x 157mm x 40mm
- Gewicht: 1108g
- ISBN-13: 9780521876070
- ISBN-10: 0521876079
- Artikelnr.: 28524296
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Peter K. Friz is a Reader in the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge. He is also a Research Group Leader at the Johann Radon Institute at the Austrian Academy of Sciences, Linz.
Preface
Introduction
The story in a nutshell
Part I. Basics: 1. Continuous paths of bounded variation
2. Riemann-Stieltjes integration
3. Ordinary differential equations (ODEs)
4. ODEs: smoothness
5. Variation and Hölder spaces
6. Young integration
Part II. Abstract Theory of Rough Paths: 7. Free nilpotent groups
8. Variation and Hölder spaces on free groups
9. Geometric rough path spaces
10. Rough differential equations (RDEs)
11. RDEs: smoothness
12. RDEs with drift and other topics
Part III. Stochastic Processes Lifted to Rough Paths: 13. Brownian motion
14. Continuous (semi)martingales
15. Gaussian processes
16. Markov processes
Part IV. Applications to Stochastic Analysis: 17. Stochastic differential equations and stochastic flows
18. Stochastic Taylor expansions
19. Support theorem and large deviations
20. Malliavin calculus for RDEs
Part V. Appendix: A. Sample path regularity and related topics
B. Banach calculus
C. Large deviations
D. Gaussian analysis
E. Analysis on local Dirichlet spaces
Frequently used notation
References
Index.
Introduction
The story in a nutshell
Part I. Basics: 1. Continuous paths of bounded variation
2. Riemann-Stieltjes integration
3. Ordinary differential equations (ODEs)
4. ODEs: smoothness
5. Variation and Hölder spaces
6. Young integration
Part II. Abstract Theory of Rough Paths: 7. Free nilpotent groups
8. Variation and Hölder spaces on free groups
9. Geometric rough path spaces
10. Rough differential equations (RDEs)
11. RDEs: smoothness
12. RDEs with drift and other topics
Part III. Stochastic Processes Lifted to Rough Paths: 13. Brownian motion
14. Continuous (semi)martingales
15. Gaussian processes
16. Markov processes
Part IV. Applications to Stochastic Analysis: 17. Stochastic differential equations and stochastic flows
18. Stochastic Taylor expansions
19. Support theorem and large deviations
20. Malliavin calculus for RDEs
Part V. Appendix: A. Sample path regularity and related topics
B. Banach calculus
C. Large deviations
D. Gaussian analysis
E. Analysis on local Dirichlet spaces
Frequently used notation
References
Index.
Preface
Introduction
The story in a nutshell
Part I. Basics: 1. Continuous paths of bounded variation
2. Riemann-Stieltjes integration
3. Ordinary differential equations (ODEs)
4. ODEs: smoothness
5. Variation and Hölder spaces
6. Young integration
Part II. Abstract Theory of Rough Paths: 7. Free nilpotent groups
8. Variation and Hölder spaces on free groups
9. Geometric rough path spaces
10. Rough differential equations (RDEs)
11. RDEs: smoothness
12. RDEs with drift and other topics
Part III. Stochastic Processes Lifted to Rough Paths: 13. Brownian motion
14. Continuous (semi)martingales
15. Gaussian processes
16. Markov processes
Part IV. Applications to Stochastic Analysis: 17. Stochastic differential equations and stochastic flows
18. Stochastic Taylor expansions
19. Support theorem and large deviations
20. Malliavin calculus for RDEs
Part V. Appendix: A. Sample path regularity and related topics
B. Banach calculus
C. Large deviations
D. Gaussian analysis
E. Analysis on local Dirichlet spaces
Frequently used notation
References
Index.
Introduction
The story in a nutshell
Part I. Basics: 1. Continuous paths of bounded variation
2. Riemann-Stieltjes integration
3. Ordinary differential equations (ODEs)
4. ODEs: smoothness
5. Variation and Hölder spaces
6. Young integration
Part II. Abstract Theory of Rough Paths: 7. Free nilpotent groups
8. Variation and Hölder spaces on free groups
9. Geometric rough path spaces
10. Rough differential equations (RDEs)
11. RDEs: smoothness
12. RDEs with drift and other topics
Part III. Stochastic Processes Lifted to Rough Paths: 13. Brownian motion
14. Continuous (semi)martingales
15. Gaussian processes
16. Markov processes
Part IV. Applications to Stochastic Analysis: 17. Stochastic differential equations and stochastic flows
18. Stochastic Taylor expansions
19. Support theorem and large deviations
20. Malliavin calculus for RDEs
Part V. Appendix: A. Sample path regularity and related topics
B. Banach calculus
C. Large deviations
D. Gaussian analysis
E. Analysis on local Dirichlet spaces
Frequently used notation
References
Index.