William E Schiesser, Graham W Griffiths
A Compendium of Partial Differential Equation Models
Method of Lines Analysis with MATLAB
William E Schiesser, Graham W Griffiths
A Compendium of Partial Differential Equation Models
Method of Lines Analysis with MATLAB
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.
Andere Kunden interessierten sich auch für
- J. C. R. Hunt / J. C. Vassilicos (eds.)Turbulence Structure and Vortex Dynamics137,99 €
- Nicholas Philippe AyacheComputational Models for the Human Body: Special Volume170,99 €
- Peter KornerupFinite Precision Number Systems and Arithmetic132,99 €
- René L SchillingCounterexamples in Measure and Integration128,99 €
- Compendium der allgemeinen und speciellen pathologischen Anatomie25,00 €
- Carl SeilerCompendium of Microscopical Technology16,90 €
- Samuel. WaggamanA Compendium of Botanic Materia Medica34,90 €
-
-
-
Presents numerical methods and computer code in Matlab for the solution of ODEs and PDEs with detailed line-by-line discussion.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 490
- Erscheinungstermin: 16. März 2009
- Englisch
- Abmessung: 261mm x 182mm x 32mm
- Gewicht: 1019g
- ISBN-13: 9780521519861
- ISBN-10: 0521519861
- Artikelnr.: 26370672
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 490
- Erscheinungstermin: 16. März 2009
- Englisch
- Abmessung: 261mm x 182mm x 32mm
- Gewicht: 1019g
- ISBN-13: 9780521519861
- ISBN-10: 0521519861
- Artikelnr.: 26370672
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
William E. Schiesser is the Emeritus R. L. McCann Professor of Chemical Engineering and a Professor of Mathematics at Lehigh University. He is also a visiting professor at the University of Pennsylvania and the co-author of the Cambridge book Computational Transport Phenomena.
1. An introduction to the Method of Lines (MOL)
2. A one-dimensional, linear partial differential equation
3. Green's function analysis
4. Two nonlinear, variable coeffcient, inhomogeneous PDEs
5. Euler, Navier-Stokes and Burgers equations
6. The Cubic Schrödinger Equation (CSE)
7. The Korteweg-deVries (KdV) equation
8. The linear wave equation
9. Maxwell's equations
10. Elliptic PDEs: Laplace's equation
11. Three-dimensional PDE
12. PDE with a mixed partial derivative
13. Simultaneous, nonlinear, 2D PDEs in cylindrical coordinates
14. Diffusion equation in spherical coordinates
Appendix 1: partial differential equations from conservation principles: the anisotropic diffusion equation
Appendix 2: order conditions for finite difference approximations
Appendix 3: analytical solution of nonlinear, traveling wave partial differential equations
Appendix 4: implementation of time varying boundary conditions
Appendix 5: the DSS library
Appendix 6: animating simulation results.
2. A one-dimensional, linear partial differential equation
3. Green's function analysis
4. Two nonlinear, variable coeffcient, inhomogeneous PDEs
5. Euler, Navier-Stokes and Burgers equations
6. The Cubic Schrödinger Equation (CSE)
7. The Korteweg-deVries (KdV) equation
8. The linear wave equation
9. Maxwell's equations
10. Elliptic PDEs: Laplace's equation
11. Three-dimensional PDE
12. PDE with a mixed partial derivative
13. Simultaneous, nonlinear, 2D PDEs in cylindrical coordinates
14. Diffusion equation in spherical coordinates
Appendix 1: partial differential equations from conservation principles: the anisotropic diffusion equation
Appendix 2: order conditions for finite difference approximations
Appendix 3: analytical solution of nonlinear, traveling wave partial differential equations
Appendix 4: implementation of time varying boundary conditions
Appendix 5: the DSS library
Appendix 6: animating simulation results.
1. An introduction to the Method of Lines (MOL)
2. A one-dimensional, linear partial differential equation
3. Green's function analysis
4. Two nonlinear, variable coeffcient, inhomogeneous PDEs
5. Euler, Navier-Stokes and Burgers equations
6. The Cubic Schrödinger Equation (CSE)
7. The Korteweg-deVries (KdV) equation
8. The linear wave equation
9. Maxwell's equations
10. Elliptic PDEs: Laplace's equation
11. Three-dimensional PDE
12. PDE with a mixed partial derivative
13. Simultaneous, nonlinear, 2D PDEs in cylindrical coordinates
14. Diffusion equation in spherical coordinates
Appendix 1: partial differential equations from conservation principles: the anisotropic diffusion equation
Appendix 2: order conditions for finite difference approximations
Appendix 3: analytical solution of nonlinear, traveling wave partial differential equations
Appendix 4: implementation of time varying boundary conditions
Appendix 5: the DSS library
Appendix 6: animating simulation results.
2. A one-dimensional, linear partial differential equation
3. Green's function analysis
4. Two nonlinear, variable coeffcient, inhomogeneous PDEs
5. Euler, Navier-Stokes and Burgers equations
6. The Cubic Schrödinger Equation (CSE)
7. The Korteweg-deVries (KdV) equation
8. The linear wave equation
9. Maxwell's equations
10. Elliptic PDEs: Laplace's equation
11. Three-dimensional PDE
12. PDE with a mixed partial derivative
13. Simultaneous, nonlinear, 2D PDEs in cylindrical coordinates
14. Diffusion equation in spherical coordinates
Appendix 1: partial differential equations from conservation principles: the anisotropic diffusion equation
Appendix 2: order conditions for finite difference approximations
Appendix 3: analytical solution of nonlinear, traveling wave partial differential equations
Appendix 4: implementation of time varying boundary conditions
Appendix 5: the DSS library
Appendix 6: animating simulation results.