Präsentiert die NMR-Theorie in Verbindung mit Unterlagen aus Mathematica-Kursen. - Bietet kurze, Schwerpunktkapitel mit kurzen Erläuterungen zu definierten Themen und konzentriert sich dabei auf mathematische Beschreibungen. - Präsentiert prägnant wichtige Erkenntnisse aus der Quantenmechanik, die bei der Prognose und Simulation von Ergebnissen aus NMR-Versuchen einfach angewendet werden können. - Enthält Mathematica-Anleitungen, die die Theorie in Form von Text, Grafik, Ton und Berechnungsbeispielen praktisch umsetzen. - Geht auf bewährte Methoden des Autors aus über 25 Jahren…mehr
Präsentiert die NMR-Theorie in Verbindung mit Unterlagen aus Mathematica-Kursen.
- Bietet kurze, Schwerpunktkapitel mit kurzen Erläuterungen zu definierten Themen und konzentriert sich dabei auf mathematische Beschreibungen. - Präsentiert prägnant wichtige Erkenntnisse aus der Quantenmechanik, die bei der Prognose und Simulation von Ergebnissen aus NMR-Versuchen einfach angewendet werden können. - Enthält Mathematica-Anleitungen, die die Theorie in Form von Text, Grafik, Ton und Berechnungsbeispielen praktisch umsetzen. - Geht auf bewährte Methoden des Autors aus über 25 Jahren Lehrerfahrung zurück. Die Unterlagen erläutern präzise die Theorie und bieten nützliche Berechnungsvorlagen für NMR-Forscher.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Alan J. Benesi was Director of the Pennsylvania State University NMR Facility from 1987-2012. He earned his Ph.D. in Biophysics at the University of California, Berkeley, in 1975. He has published many papers related to solid state and liquid state NMR, solid state and liquid state NMR relaxation, and rotational and translational diffusion.
Inhaltsangabe
Preface viii Chapter 1 Introduction 1 Chapter 2 Using Mathematicac; Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9 Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41 Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15 Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50 Chapter 17 Solving the Liouville-Von Neumann Equation for the Time Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59 Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61 Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24 The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR 86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments 89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96 Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134 Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144 Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow, Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38 Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What is NMR Relaxation and what Causes it? 163 Chapter 40 Practical Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41 The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter 42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation Functions and Spectral Densities for Isotropic Rotational Diffusion 198 Chapter 45 Conclusion 202 Bibliography 203 INDEX 000
Preface viii Chapter 1 Introduction 1 Chapter 2 Using Mathematicac; Homework Philosophy 3 Chapter 3 The NMR Spectrometer 4 Chapter 4 The NMR Experiment 7 Chapter 5 Classical Magnets and Precession 11 Chapter 6 The Bloch Equation in the Laboratory Reference Frame 16 Chapter 7 The Bloch Equation in the Rotating Frame 19 Chapter 8 The Vector Model 23 Chapter 9 Fourier Transform of the NMR Signal 29 Chapter 10 Essentials of Quantum Mechanics 31 Chapter 11 The Time ]Dependent Schrodinger Equation, Matrix Representation of Nuclear Spin Angular Momentum Operators 35 Chapter 12 The Density Operator 39 Chapter 13 The Liouville-von Neumann Equation 41 Chapter 14 The Density Operator at Thermal Equilibrium 42 Chapter 15 Hamiltonians of NMR: Isotropic Liquid ]State Hamiltonians 45 Chapter 16 The Direct Product Matrix Representation of Coupling Hamiltonians HJ and HD 50 Chapter 17 Solving the Liouville-Von Neumann Equation for the Time Dependence of the Density Matrix 54 Chapter 18 The Observable NMR Signal 59 Chapter 19 Commutation Relations of Spin Angular Momentum Operators 61 Chapter 20 The Product Operator Formalism 65 Chapter 21 NMR Pulse Sequences and Phase Cycling 68 Chapter 22 Analysis of Liquid ]State NMR Pulse Sequences with the Product Operator Formalism 72 Chapter 23 Analysis of the Inept Pulse Sequence with Program Shortspin and Program Poma 78 Chapter 24 The Radio Frequency Hamiltonian 82 Chapter 25 Comparison of 1D and 2D NMR 86 Chapter 26 Analysis of the HSQC, HMQC, and DQF ]COSY 2D NMR Experiments 89 Chapter 27 Selection of Coherence Order Pathways with Phase Cycling 96 Chapter 28 Selection of Coherence Order Pathways with Pulsed Magnetic Field Gradients 104 Chapter 29 Hamiltonians of NMR: Anisotropic Solid ]State Internal Hamiltonians in Rigid Solids 111 Chapter 30 Rotations of Real Space Axis Systems--Cartesian Method 120 Chapter 31 Wigner Rotations of Irreducible Spherical Tensors 123 Chapter 32 Solid ]State NMR Real Space Spherical Tensors 129 Chapter 33 Time ]Independent Perturbation Theory 134 Chapter 34 Average Hamiltonian Theory 141 Chapter 35 The Powder Average 144 Chapter 36 Overview of Molecular Motion and NMR 147 Chapter 37 Slow, Intermediate, And Fast Exchange In Liquid ]State Nmr Spectra 150 Chapter 38 Exchange in Solid ]State NMR Spectra 154 Chapter 39 N MR Relaxation: What is NMR Relaxation and what Causes it? 163 Chapter 40 Practical Considerations for the Calculation of NMR Relaxation Rates 168 Chapter 41 The Master Equation for NMR Relaxation--Single Spin Species I 170 Chapter 42 Heteronuclear Dipolar and J Relaxation 183 Chapter 43 Calculation of Autocorrelation Functions, Spectral Densities, and NMR Relaxation Times for Jump Motions in Solids 189 Chapter 44 Calculation of Autocorrelation Functions and Spectral Densities for Isotropic Rotational Diffusion 198 Chapter 45 Conclusion 202 Bibliography 203 INDEX 000
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826