Michael R Kosorok, Erica E M Moodie
Adaptive Treatment Strategies in Practice
Planning Trials and Analyzing Data for Personalized Medicine
Michael R Kosorok, Erica E M Moodie
Adaptive Treatment Strategies in Practice
Planning Trials and Analyzing Data for Personalized Medicine
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The most up-to-date summary of current statistical research in personalized medicine, ideal for a broad audience of medical researchers.
Andere Kunden interessierten sich auch für
- Scott M. BerryBayesian Adaptive Methods for Clinical Trials136,99 €
- Molecular Aspects of Innate and Adaptive Immunity136,99 €
- John S. BarlowThe Cerebellum and Adaptive Control137,99 €
- Synthetic Vaccines131,99 €
- Tak W. MakPrimer to the Immune Response97,99 €
- Pathogenic Bacteria: Pathogenesis, Virulence Factors and Antibacterial Treatment Strategies137,99 €
- Teddy BaderWhich Treatment Is Best? Spoof or Proof?75,99 €
-
-
-
The most up-to-date summary of current statistical research in personalized medicine, ideal for a broad audience of medical researchers.
Produktdetails
- Produktdetails
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 364
- Erscheinungstermin: 30. Dezember 2015
- Englisch
- Abmessung: 256mm x 177mm x 25mm
- Gewicht: 779g
- ISBN-13: 9781611974171
- ISBN-10: 1611974178
- Artikelnr.: 44918346
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Society for Industrial and Applied Mathematics (SIAM)
- Seitenzahl: 364
- Erscheinungstermin: 30. Dezember 2015
- Englisch
- Abmessung: 256mm x 177mm x 25mm
- Gewicht: 779g
- ISBN-13: 9781611974171
- ISBN-10: 1611974178
- Artikelnr.: 44918346
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Michael R. Kosorok is W. R. Kenan, Jr Distinguished Professor and Chair of Biostatistics and Professor of Statistics and Operations Research at the University of North Carolina, Chapel Hill. He is an honorary fellow of both the American Statistical Association and the Institute of Mathematical Statistics and an Associate Editor of The Annals of Statistics, the Journal of the American Statistical Association, and the Journal of the Royal Statistical Society, Series B. He is the contact principal investigator for a program project (P01) from the US National Cancer Institute, entitled 'Statistical Methods for Cancer Clinical Trials'. His main research interests are in precision medicine, clinical trials, machine learning, and related areas.
List of contributors; List of figures; Preface; 1. Introduction M. R.
Kosorok and E. E. M. Moodie; Part I. Design of Trials for Estimating
Dynamic Treatment Regimes: 2. DTRs and SMARTs: definitions, designs, and
applications K. M. Kidwell; 3. Efficient design for clinically relevant
intent-to-treat comparisons R. Dawson and P. W. Lavori; 4. SMART design,
conduct, and analysis in oncology P. F. Thall; 5. Sample size calculations
for clustered SMART designs P. Ghosh, Y. K. Cheung and B. Chakraborty; Part
II. Practical Challenges in Dynamic Treatment Regime Analyses: 6. Analysis
in the single-stage setting: an overview of estimation approaches for
dynamic treatment regimes M. P. Wallace and E. E. M. Moodie; 7.
G-estimation for dynamic treatment regimes in the longitudinal setting D.
A. Stephens; 8. Outcome weighted learning methods for optimal dynamic
treatment regimes Y. Q. Zhao; 9. Value search estimators for optimal
dynamic treatment regimes M. Davidian, A. A. Tsiatis and E. B. Laber; 10.
Evaluation of longitudinal dynamics with and without marginal structural
working models M. Petersen, J. Schwab, E. Geng and M. J. van der Laan; 11.
Imputation strategy for SMARTs S. M. Shortreed, E. B. Laber, J. Pineau and
S. A. Murphy; 12. Clinical trials for personalized dose finding G. Chen and
D. Zeng; 13. Methods for analyzing DTRs with censored survival data G. S.
Johnson, A. Topp and A. S. Wahed; 14. Outcome weighted learning with a
reject option M. Yuan; 15. Estimation of dynamic treatment regimes for
complex outcomes: balancing benefits and risks K. A. Linn, E. B. Laber and
L. A. Stefanski; 16. Practical reinforcement learning in dynamic treatment
regimes R. D. Vincent, J. Pineau, N. Ybarra and I. El Naqa; 17.
Reinforcement learning applications in clinical trials Y. F. Zhao;
Bibliography; Index.
Kosorok and E. E. M. Moodie; Part I. Design of Trials for Estimating
Dynamic Treatment Regimes: 2. DTRs and SMARTs: definitions, designs, and
applications K. M. Kidwell; 3. Efficient design for clinically relevant
intent-to-treat comparisons R. Dawson and P. W. Lavori; 4. SMART design,
conduct, and analysis in oncology P. F. Thall; 5. Sample size calculations
for clustered SMART designs P. Ghosh, Y. K. Cheung and B. Chakraborty; Part
II. Practical Challenges in Dynamic Treatment Regime Analyses: 6. Analysis
in the single-stage setting: an overview of estimation approaches for
dynamic treatment regimes M. P. Wallace and E. E. M. Moodie; 7.
G-estimation for dynamic treatment regimes in the longitudinal setting D.
A. Stephens; 8. Outcome weighted learning methods for optimal dynamic
treatment regimes Y. Q. Zhao; 9. Value search estimators for optimal
dynamic treatment regimes M. Davidian, A. A. Tsiatis and E. B. Laber; 10.
Evaluation of longitudinal dynamics with and without marginal structural
working models M. Petersen, J. Schwab, E. Geng and M. J. van der Laan; 11.
Imputation strategy for SMARTs S. M. Shortreed, E. B. Laber, J. Pineau and
S. A. Murphy; 12. Clinical trials for personalized dose finding G. Chen and
D. Zeng; 13. Methods for analyzing DTRs with censored survival data G. S.
Johnson, A. Topp and A. S. Wahed; 14. Outcome weighted learning with a
reject option M. Yuan; 15. Estimation of dynamic treatment regimes for
complex outcomes: balancing benefits and risks K. A. Linn, E. B. Laber and
L. A. Stefanski; 16. Practical reinforcement learning in dynamic treatment
regimes R. D. Vincent, J. Pineau, N. Ybarra and I. El Naqa; 17.
Reinforcement learning applications in clinical trials Y. F. Zhao;
Bibliography; Index.
List of contributors; List of figures; Preface; 1. Introduction M. R.
Kosorok and E. E. M. Moodie; Part I. Design of Trials for Estimating
Dynamic Treatment Regimes: 2. DTRs and SMARTs: definitions, designs, and
applications K. M. Kidwell; 3. Efficient design for clinically relevant
intent-to-treat comparisons R. Dawson and P. W. Lavori; 4. SMART design,
conduct, and analysis in oncology P. F. Thall; 5. Sample size calculations
for clustered SMART designs P. Ghosh, Y. K. Cheung and B. Chakraborty; Part
II. Practical Challenges in Dynamic Treatment Regime Analyses: 6. Analysis
in the single-stage setting: an overview of estimation approaches for
dynamic treatment regimes M. P. Wallace and E. E. M. Moodie; 7.
G-estimation for dynamic treatment regimes in the longitudinal setting D.
A. Stephens; 8. Outcome weighted learning methods for optimal dynamic
treatment regimes Y. Q. Zhao; 9. Value search estimators for optimal
dynamic treatment regimes M. Davidian, A. A. Tsiatis and E. B. Laber; 10.
Evaluation of longitudinal dynamics with and without marginal structural
working models M. Petersen, J. Schwab, E. Geng and M. J. van der Laan; 11.
Imputation strategy for SMARTs S. M. Shortreed, E. B. Laber, J. Pineau and
S. A. Murphy; 12. Clinical trials for personalized dose finding G. Chen and
D. Zeng; 13. Methods for analyzing DTRs with censored survival data G. S.
Johnson, A. Topp and A. S. Wahed; 14. Outcome weighted learning with a
reject option M. Yuan; 15. Estimation of dynamic treatment regimes for
complex outcomes: balancing benefits and risks K. A. Linn, E. B. Laber and
L. A. Stefanski; 16. Practical reinforcement learning in dynamic treatment
regimes R. D. Vincent, J. Pineau, N. Ybarra and I. El Naqa; 17.
Reinforcement learning applications in clinical trials Y. F. Zhao;
Bibliography; Index.
Kosorok and E. E. M. Moodie; Part I. Design of Trials for Estimating
Dynamic Treatment Regimes: 2. DTRs and SMARTs: definitions, designs, and
applications K. M. Kidwell; 3. Efficient design for clinically relevant
intent-to-treat comparisons R. Dawson and P. W. Lavori; 4. SMART design,
conduct, and analysis in oncology P. F. Thall; 5. Sample size calculations
for clustered SMART designs P. Ghosh, Y. K. Cheung and B. Chakraborty; Part
II. Practical Challenges in Dynamic Treatment Regime Analyses: 6. Analysis
in the single-stage setting: an overview of estimation approaches for
dynamic treatment regimes M. P. Wallace and E. E. M. Moodie; 7.
G-estimation for dynamic treatment regimes in the longitudinal setting D.
A. Stephens; 8. Outcome weighted learning methods for optimal dynamic
treatment regimes Y. Q. Zhao; 9. Value search estimators for optimal
dynamic treatment regimes M. Davidian, A. A. Tsiatis and E. B. Laber; 10.
Evaluation of longitudinal dynamics with and without marginal structural
working models M. Petersen, J. Schwab, E. Geng and M. J. van der Laan; 11.
Imputation strategy for SMARTs S. M. Shortreed, E. B. Laber, J. Pineau and
S. A. Murphy; 12. Clinical trials for personalized dose finding G. Chen and
D. Zeng; 13. Methods for analyzing DTRs with censored survival data G. S.
Johnson, A. Topp and A. S. Wahed; 14. Outcome weighted learning with a
reject option M. Yuan; 15. Estimation of dynamic treatment regimes for
complex outcomes: balancing benefits and risks K. A. Linn, E. B. Laber and
L. A. Stefanski; 16. Practical reinforcement learning in dynamic treatment
regimes R. D. Vincent, J. Pineau, N. Ybarra and I. El Naqa; 17.
Reinforcement learning applications in clinical trials Y. F. Zhao;
Bibliography; Index.