29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

Na-ion batteries, promising for electric vehicles and grids due to the abundance and uniform distribution of sodium, face challenges in achieving sufficient energy density through cathode materials chemistry. Among various cathode constituents explored for Na-ion batteries, scientists have investigated Nasicon compounds. The open framework of Nasicon structures facilitates Na+ ion diffusion, making them excellent cathode materials. Recognized for structural and thermal stabilities, a wide range of electrochemical potentials, and superior ionic conductivity, Nasicon-based materials are…mehr

Produktbeschreibung
Na-ion batteries, promising for electric vehicles and grids due to the abundance and uniform distribution of sodium, face challenges in achieving sufficient energy density through cathode materials chemistry. Among various cathode constituents explored for Na-ion batteries, scientists have investigated Nasicon compounds. The open framework of Nasicon structures facilitates Na+ ion diffusion, making them excellent cathode materials. Recognized for structural and thermal stabilities, a wide range of electrochemical potentials, and superior ionic conductivity, Nasicon-based materials are considered significant cathode constituents. However, their poor electronic conductivity limits practical applications, prompting researchers to employ strategies such as carbon coating, size reduction, and elemental doping to enhance electronic conductivity. This paper provides an overview of the recent progress in the development of Nasicon-based cathode constituents for Na-ion batteries.
Autorenporträt
La dott.ssa D. Saritha è professore associato presso il Dipartimento di Chimica del Chaitanya Bharathi Institute of Technology di Hyderabad. I suoi studi di dottorato sono stati completati presso l'Indian Institute of Technology Madras e possiede competenze sia nella produzione additiva che nella scienza dei materiali.