Joel J. P. C. RodriguesArchitecture and Enhanced Performance
Advances in Delay-Tolerant Networks (Dtns)
Architecture and Enhanced Performance
Herausgeber: Rodrigues, Joel J P C
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
Joel J. P. C. RodriguesArchitecture and Enhanced Performance
Advances in Delay-Tolerant Networks (Dtns)
Architecture and Enhanced Performance
Herausgeber: Rodrigues, Joel J P C
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of…mehr
Andere Kunden interessierten sich auch für
- Edward J. BirraneSecuring Delay-Tolerant Networks with Bpsec143,99 €
- Athanasios V. Vasilakos / Yan Zhang / Thrasyvoulos Spyropoulos (Hrsg.)Delay Tolerant Networks176,99 €
- Mehul ShahEfficient Routing Algorithm for Delay Tolerant Networks26,99 €
- Access, Fronthaul and Backhaul Networks for 5g & Beyond171,99 €
- Alessandro Vanelli-Coralli5g Non-Terrestrial Networks99,99 €
- Advances on Broad-Band Wireless Computing, Communication and Applications186,99 €
- Advances on Broad-Band Wireless Computing, Communication and Applications150,99 €
-
-
Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds.
Produktdetails
- Produktdetails
- Woodhead Publishing Series in Electronic and Optical Materials
- Verlag: Elsevier Science & Technology
- Artikelnr. des Verlages: C2013-0-16374-X
- Seitenzahl: 298
- Erscheinungstermin: 4. November 2014
- Englisch
- Abmessung: 237mm x 159mm x 22mm
- Gewicht: 570g
- ISBN-13: 9780857098405
- ISBN-10: 0857098403
- Artikelnr.: 41492974
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Woodhead Publishing Series in Electronic and Optical Materials
- Verlag: Elsevier Science & Technology
- Artikelnr. des Verlages: C2013-0-16374-X
- Seitenzahl: 298
- Erscheinungstermin: 4. November 2014
- Englisch
- Abmessung: 237mm x 159mm x 22mm
- Gewicht: 570g
- ISBN-13: 9780857098405
- ISBN-10: 0857098403
- Artikelnr.: 41492974
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- List of contributors
- Woodhead Publishing Series in Electronic and Optical Materials
- Preface
- 1: An introduction to delay and disruption-tolerant networks (DTNs)
- Abstract
- 1.1 Introduction
- 1.2 Delay-tolerant network architecture
- 1.3 DTN application scenarios
- 1.4 DTN routing protocols
- 1.5 Conclusion
- Acknowledgements
- Part One: Types of delay-tolerant networks (DTNs)
- 2: Delay-tolerant networks (DTNs) for satellite communications
- Abstract
- 2.1 Introduction
- 2.2 DTN architecture
- 2.3 Geosynchronous (GEO) constellations
- 2.4 Low earth orbit (LEO) constellations
- 2.5 Conclusion
- Acknowledgements
- 3: Delay-tolerant networks (DTNs) for deep-space communications
- Abstract
- 3.1 Introduction
- 3.2 Data communications in deep space
- 3.3 Networking requirements for deep-space data
- 3.4 Implementing a deep-space DTN solution
- 3.5 Summary
- 4: Vehicular delay-tolerant networks (VDTNs)
- Abstract
- 4.1 Introduction
- 4.2 Vehicular network applications
- 4.3 Vehicular communications
- 4.4 Vehicular delay-tolerant networks
- 4.5 Conclusion
- Acknowledgments
- 5: Delay-tolerant networks (DTNs) for underwater communications
- Abstract
- 5.1 Introduction
- 5.2 Related work
- 5.3 A contemporary view of underwater delay-tolerant networks
- 5.4 Future trends
- 5.5 Conclusion
- 6: Delay-tolerant networks (DTNs) for emergency communications
- Abstract
- 6.1 Introduction
- 6.2 Overview of proposed DTN solutions
- 6.3 Mobility models for emergency DTNs
- 6.4 DistressNet
- 6.5 Routing protocols for emergency DTNs
- 6.6 Minimizing energy consumption in emergency DTNs
- 6.7 Conclusions and future trends
- 2: Delay-tolerant networks (DTNs) for satellite communications
- Part Two: Improving the performance of delay-tolerant networks (DTNs)
- 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs)
- Abstract
- 7.1 Introduction
- 7.2 DTN architecture and Bundle Protocol implementation profiles
- 7.3 Alternative approaches
- 7.4 Future trends
- 7.5 Sources of further information and advice
- 8: Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs)
- Abstract
- 8.1 Introduction
- 8.2 Challenges
- 8.3 Overview of multiple existing opportunistic routing protocols in mobile ad hoc networks
- 8.4 Combining on-demand opportunistic routing protocols
- 8.5 Open research topics and future trends
- 8.6 Sources of further information and advice
- 9: Reliable data streaming over delay-tolerant networks (DTNs)
- Abstract
- 9.1 Introduction
- 9.2 Challenges for streaming support in DTNs
- 9.3 Using on-the-fly coding to enable robust DTN streaming
- 9.4 Evaluation of existing streaming proposals over a DTN network
- 9.5 Implementation discussion
- 9.6 Conclusion
- 10: Rapid selection and dissemination of urgent messages over delay-tolerant networks (DTNs)
- Abstract
- 10.1 Introduction
- 10.2 One-to-many communication in resource-constrained environments
- 10.3 Random Walk Gossip (RWG)
- 10.4 RWG and message differentiation
- 10.5 Evaluation with vehicular mobility models
- 10.6 Discussion
- 11: Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs)
- Abstract
- 11.1 Introduction
- 11.2 Social characteristics of DTNs
- 11.3 Social-based human mobility models
- 11.4
- 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs)
- List of contributors
- Woodhead Publishing Series in Electronic and Optical Materials
- Preface
- 1: An introduction to delay and disruption-tolerant networks (DTNs)
- Abstract
- 1.1 Introduction
- 1.2 Delay-tolerant network architecture
- 1.3 DTN application scenarios
- 1.4 DTN routing protocols
- 1.5 Conclusion
- Acknowledgements
- Part One: Types of delay-tolerant networks (DTNs)
- 2: Delay-tolerant networks (DTNs) for satellite communications
- Abstract
- 2.1 Introduction
- 2.2 DTN architecture
- 2.3 Geosynchronous (GEO) constellations
- 2.4 Low earth orbit (LEO) constellations
- 2.5 Conclusion
- Acknowledgements
- 3: Delay-tolerant networks (DTNs) for deep-space communications
- Abstract
- 3.1 Introduction
- 3.2 Data communications in deep space
- 3.3 Networking requirements for deep-space data
- 3.4 Implementing a deep-space DTN solution
- 3.5 Summary
- 4: Vehicular delay-tolerant networks (VDTNs)
- Abstract
- 4.1 Introduction
- 4.2 Vehicular network applications
- 4.3 Vehicular communications
- 4.4 Vehicular delay-tolerant networks
- 4.5 Conclusion
- Acknowledgments
- 5: Delay-tolerant networks (DTNs) for underwater communications
- Abstract
- 5.1 Introduction
- 5.2 Related work
- 5.3 A contemporary view of underwater delay-tolerant networks
- 5.4 Future trends
- 5.5 Conclusion
- 6: Delay-tolerant networks (DTNs) for emergency communications
- Abstract
- 6.1 Introduction
- 6.2 Overview of proposed DTN solutions
- 6.3 Mobility models for emergency DTNs
- 6.4 DistressNet
- 6.5 Routing protocols for emergency DTNs
- 6.6 Minimizing energy consumption in emergency DTNs
- 6.7 Conclusions and future trends
- 2: Delay-tolerant networks (DTNs) for satellite communications
- Part Two: Improving the performance of delay-tolerant networks (DTNs)
- 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs)
- Abstract
- 7.1 Introduction
- 7.2 DTN architecture and Bundle Protocol implementation profiles
- 7.3 Alternative approaches
- 7.4 Future trends
- 7.5 Sources of further information and advice
- 8: Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs)
- Abstract
- 8.1 Introduction
- 8.2 Challenges
- 8.3 Overview of multiple existing opportunistic routing protocols in mobile ad hoc networks
- 8.4 Combining on-demand opportunistic routing protocols
- 8.5 Open research topics and future trends
- 8.6 Sources of further information and advice
- 9: Reliable data streaming over delay-tolerant networks (DTNs)
- Abstract
- 9.1 Introduction
- 9.2 Challenges for streaming support in DTNs
- 9.3 Using on-the-fly coding to enable robust DTN streaming
- 9.4 Evaluation of existing streaming proposals over a DTN network
- 9.5 Implementation discussion
- 9.6 Conclusion
- 10: Rapid selection and dissemination of urgent messages over delay-tolerant networks (DTNs)
- Abstract
- 10.1 Introduction
- 10.2 One-to-many communication in resource-constrained environments
- 10.3 Random Walk Gossip (RWG)
- 10.4 RWG and message differentiation
- 10.5 Evaluation with vehicular mobility models
- 10.6 Discussion
- 11: Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs)
- Abstract
- 11.1 Introduction
- 11.2 Social characteristics of DTNs
- 11.3 Social-based human mobility models
- 11.4
- 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs)