Hans-Joachim Baues
Algebraic Homotopy
Hans-Joachim Baues
Algebraic Homotopy
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book gives a general outlook on homotopy theory.
Andere Kunden interessierten sich auch für
Claire Voisin (Paris Centre de Mathematiques de Jussieu)Hodge Theory and Complex Algebraic Geometry I73,99 €
Claire Voisin (Universite de Paris VI (Pierre et Marie Curie) )Hodge Theory and Complex Algebraic Geometry II71,99 €
J. S. Milne (Ann Arbor University of Michigan)Algebraic Groups106,99 €
A. Frohlich (University of London)Algebraic Number Theory98,99 €
J. S. Milne (Ann Arbor University of Michigan)Algebraic Groups56,99 €
David Anderson (Ohio State University)Equivariant Cohomology in Algebraic Geometry41,99 €
Yujiro Kawamata (University of Tokyo)Algebraic Varieties72,99 €-
-
-
Produktdetails
- Produktdetails
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- Seitenzahl: 488
- Erscheinungstermin: 30. November 2007
- Englisch
- Abmessung: 229mm x 152mm x 29mm
- Gewicht: 714g
- ISBN-13: 9780521055314
- ISBN-10: 0521055318
- Artikelnr.: 23366940
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Cambridge Studies in Advanced Mathematics
- Verlag: Cambridge University Press
- Seitenzahl: 488
- Erscheinungstermin: 30. November 2007
- Englisch
- Abmessung: 229mm x 152mm x 29mm
- Gewicht: 714g
- ISBN-13: 9780521055314
- ISBN-10: 0521055318
- Artikelnr.: 23366940
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface
Introduction
List of symbols
1. Axioms for homotopy theory and examples of cofibration categories
2. Homotopy theory in a cofibration category
3. The homotopy spectral sequences in a cofibration category
4. Extensions, coverings and cohomology groups of a category
5. Maps between mapping cones
6. Homotopy theory of CW-complexes
7. Homotopy theory of complexes in a cofibration category
8. Homotopy theory of Postnikov towers and the Sullivan-de Rham equivalence of rational homotopy categories
9. Homotopy theory of reduced complexes
Bibliography
Index.
Introduction
List of symbols
1. Axioms for homotopy theory and examples of cofibration categories
2. Homotopy theory in a cofibration category
3. The homotopy spectral sequences in a cofibration category
4. Extensions, coverings and cohomology groups of a category
5. Maps between mapping cones
6. Homotopy theory of CW-complexes
7. Homotopy theory of complexes in a cofibration category
8. Homotopy theory of Postnikov towers and the Sullivan-de Rham equivalence of rational homotopy categories
9. Homotopy theory of reduced complexes
Bibliography
Index.
Preface
Introduction
List of symbols
1. Axioms for homotopy theory and examples of cofibration categories
2. Homotopy theory in a cofibration category
3. The homotopy spectral sequences in a cofibration category
4. Extensions, coverings and cohomology groups of a category
5. Maps between mapping cones
6. Homotopy theory of CW-complexes
7. Homotopy theory of complexes in a cofibration category
8. Homotopy theory of Postnikov towers and the Sullivan-de Rham equivalence of rational homotopy categories
9. Homotopy theory of reduced complexes
Bibliography
Index.
Introduction
List of symbols
1. Axioms for homotopy theory and examples of cofibration categories
2. Homotopy theory in a cofibration category
3. The homotopy spectral sequences in a cofibration category
4. Extensions, coverings and cohomology groups of a category
5. Maps between mapping cones
6. Homotopy theory of CW-complexes
7. Homotopy theory of complexes in a cofibration category
8. Homotopy theory of Postnikov towers and the Sullivan-de Rham equivalence of rational homotopy categories
9. Homotopy theory of reduced complexes
Bibliography
Index.







