26,90 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

In dieser Arbeit stellen wir den O(n log^2 n) superschnellen linearen Schur-Algorithmus (ssschur) der kleinsten linearen Quadrate vor. Der von uns beschriebene Algorithmus veranschaulicht einen schnellen Weg zur Lösung von linearen Gleichungen oder linearen Problemen der kleinsten Quadrate mit niedrigem Verschiebungsrang. Dieser Algorithmus basiert auf dem O(n^2) Schur-Algorithmus, der mittels FFT beschleunigt wird. Der Algorithmus löst ein schlecht konditioniertes Toeplitz ähnliches System unter Verwendung der Tichonow-Regularisierung. Das gelöste regularisierte System ist töplitzähnlich und…mehr

Produktbeschreibung
In dieser Arbeit stellen wir den O(n log^2 n) superschnellen linearen Schur-Algorithmus (ssschur) der kleinsten linearen Quadrate vor. Der von uns beschriebene Algorithmus veranschaulicht einen schnellen Weg zur Lösung von linearen Gleichungen oder linearen Problemen der kleinsten Quadrate mit niedrigem Verschiebungsrang. Dieser Algorithmus basiert auf dem O(n^2) Schur-Algorithmus, der mittels FFT beschleunigt wird. Der Algorithmus löst ein schlecht konditioniertes Toeplitz ähnliches System unter Verwendung der Tichonow-Regularisierung. Das gelöste regularisierte System ist töplitzähnlich und hat einen Verdrängungsrang, 4. In dieser Arbeit zeigen wir auch die Auswirkung der Wahl des Regularisierungsparameters auf die Qualität der rekonstruierten Bilder.
Autorenporträt
Instrucor of Mathematics, Kennesaw State University, 2008 -Present. Instructor of Mathematics, Georgia State University,2007-2008. Msc. Mathematics, Georgia State University, 2008.Bsc. Mathematics, Kennesaw State University, 1999. Bsc. ComputerScience, Kennesaw State University, 1998.