Algorithmic Number Theory
Herausgeber: Buhler, J. P.; Stevenhagen, P.
Algorithmic Number Theory
Herausgeber: Buhler, J. P.; Stevenhagen, P.
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A 2008 introduction to number theory for beginning graduate students with articles by the leading experts in the field.
Andere Kunden interessierten sich auch für
- Algorithmic Number Theory55,99 €
- Tim RoughgardenTwenty Lectures on Algorithmic Game Theory97,99 €
- Topics in Algorithmic Graph Theory116,99 €
- Nigel P. SmartThe Algorithmic Resolution of Diophantine Equations104,99 €
- Neal KoblitzAlgebraic Aspects of Cryptography139,99 €
- Kohtaro TadakiA Statistical Mechanical Interpretation of Algorithmic Information Theory50,99 €
- Computer Algebra Handbook122,99 €
-
-
-
A 2008 introduction to number theory for beginning graduate students with articles by the leading experts in the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 664
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 240mm x 161mm x 40mm
- Gewicht: 1151g
- ISBN-13: 9780521808545
- ISBN-10: 0521808545
- Artikelnr.: 29020741
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 664
- Erscheinungstermin: 8. Februar 2016
- Englisch
- Abmessung: 240mm x 161mm x 40mm
- Gewicht: 1151g
- ISBN-13: 9780521808545
- ISBN-10: 0521808545
- Artikelnr.: 29020741
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. Solving Pell's equation Hendrik Lenstra
2. Basic algorithms in number theory Joe Buhler and Stan Wagon
3. Elliptic curves Bjorn Poonen
4. The arithmetic of number rings Peter Stevenhagen
5. Fast multiplication and applications Dan Bernstein
6. Primality testing Rene Schoof
7. Smooth numbers: computational number theory and beyond Andrew Granville
8. Smooth numbers and the quadratic sieve Carl Pomerance
9. The number field sieve Peter Stevenhagen
10. Elementary thoughts on discrete logarithms Carl Pomerance
11. The impact of the number field sieve on the discrete logarithm problem in finite fields Oliver Schirokauer
12. Lattices Hendrik Lenstra
13. Reducing lattices to find small-height values of univariate polynomials Dan Bernstein
14. Protecting communications against forgery Dan Bernstein
15. Computing Arakelov class groups Rene Schoof
16. Computational class field theory Henri Cohen and Peter Stevenhagen
17. Zeta functions over finite fields Daqing Wan
18. Counting points on varieties over finite fields Alan Lauder and Daqing Wan
19. How to get your hands on modular forms using modular symbols William Stein
20. Congruent number problems in dimension one and two Jaap Top and Noriko Yui.
2. Basic algorithms in number theory Joe Buhler and Stan Wagon
3. Elliptic curves Bjorn Poonen
4. The arithmetic of number rings Peter Stevenhagen
5. Fast multiplication and applications Dan Bernstein
6. Primality testing Rene Schoof
7. Smooth numbers: computational number theory and beyond Andrew Granville
8. Smooth numbers and the quadratic sieve Carl Pomerance
9. The number field sieve Peter Stevenhagen
10. Elementary thoughts on discrete logarithms Carl Pomerance
11. The impact of the number field sieve on the discrete logarithm problem in finite fields Oliver Schirokauer
12. Lattices Hendrik Lenstra
13. Reducing lattices to find small-height values of univariate polynomials Dan Bernstein
14. Protecting communications against forgery Dan Bernstein
15. Computing Arakelov class groups Rene Schoof
16. Computational class field theory Henri Cohen and Peter Stevenhagen
17. Zeta functions over finite fields Daqing Wan
18. Counting points on varieties over finite fields Alan Lauder and Daqing Wan
19. How to get your hands on modular forms using modular symbols William Stein
20. Congruent number problems in dimension one and two Jaap Top and Noriko Yui.
1. Solving Pell's equation Hendrik Lenstra
2. Basic algorithms in number theory Joe Buhler and Stan Wagon
3. Elliptic curves Bjorn Poonen
4. The arithmetic of number rings Peter Stevenhagen
5. Fast multiplication and applications Dan Bernstein
6. Primality testing Rene Schoof
7. Smooth numbers: computational number theory and beyond Andrew Granville
8. Smooth numbers and the quadratic sieve Carl Pomerance
9. The number field sieve Peter Stevenhagen
10. Elementary thoughts on discrete logarithms Carl Pomerance
11. The impact of the number field sieve on the discrete logarithm problem in finite fields Oliver Schirokauer
12. Lattices Hendrik Lenstra
13. Reducing lattices to find small-height values of univariate polynomials Dan Bernstein
14. Protecting communications against forgery Dan Bernstein
15. Computing Arakelov class groups Rene Schoof
16. Computational class field theory Henri Cohen and Peter Stevenhagen
17. Zeta functions over finite fields Daqing Wan
18. Counting points on varieties over finite fields Alan Lauder and Daqing Wan
19. How to get your hands on modular forms using modular symbols William Stein
20. Congruent number problems in dimension one and two Jaap Top and Noriko Yui.
2. Basic algorithms in number theory Joe Buhler and Stan Wagon
3. Elliptic curves Bjorn Poonen
4. The arithmetic of number rings Peter Stevenhagen
5. Fast multiplication and applications Dan Bernstein
6. Primality testing Rene Schoof
7. Smooth numbers: computational number theory and beyond Andrew Granville
8. Smooth numbers and the quadratic sieve Carl Pomerance
9. The number field sieve Peter Stevenhagen
10. Elementary thoughts on discrete logarithms Carl Pomerance
11. The impact of the number field sieve on the discrete logarithm problem in finite fields Oliver Schirokauer
12. Lattices Hendrik Lenstra
13. Reducing lattices to find small-height values of univariate polynomials Dan Bernstein
14. Protecting communications against forgery Dan Bernstein
15. Computing Arakelov class groups Rene Schoof
16. Computational class field theory Henri Cohen and Peter Stevenhagen
17. Zeta functions over finite fields Daqing Wan
18. Counting points on varieties over finite fields Alan Lauder and Daqing Wan
19. How to get your hands on modular forms using modular symbols William Stein
20. Congruent number problems in dimension one and two Jaap Top and Noriko Yui.