James C. Robinson
An Introduction to Functional Analysis
Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
James C. Robinson
An Introduction to Functional Analysis
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.
Andere Kunden interessierten sich auch für
- James C. RobinsonAn Introduction to Functional Analysis44,99 €
- Jonathan LewinAn Interactive Introduction to Mathematical Analysis53,99 €
- Vern I. PaulsenAn Introduction to the Theory of Reproducing Kernel Hilbert Spaces70,99 €
- M. V. WilkesA Short Introduction to Numerical Analysis46,99 €
- Arnold NeumaierIntroduction to Numerical Analysis86,99 €
- Maurice PetytIntroduction to Finite Element Vibration Analysis200,99 €
- John R. GilesIntroduction to the Analysis of Metric Spaces68,99 €
-
-
-
Accessible text covering core functional analysis topics in Hilbert and Banach spaces, with detailed proofs and 200 fully-worked exercises.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 420
- Erscheinungstermin: 12. März 2020
- Englisch
- Abmessung: 235mm x 157mm x 27mm
- Gewicht: 756g
- ISBN-13: 9780521899642
- ISBN-10: 0521899648
- Artikelnr.: 57614832
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 420
- Erscheinungstermin: 12. März 2020
- Englisch
- Abmessung: 235mm x 157mm x 27mm
- Gewicht: 756g
- ISBN-13: 9780521899642
- ISBN-10: 0521899648
- Artikelnr.: 57614832
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
James C. Robinson is a professor in the Mathematics Institute at the University of Warwick. He has been the recipient of a Royal Society University Research Fellowship and an Engineering and Physical Sciences Research Council (EPSRC) Leadership Fellowship. He has written six books in addition to his many publications in infinite-dimensional dynamical systems, dimension theory, and partial differential equations.
Part I. Preliminaries: 1. Vector spaces and bases
2. Metric spaces
Part II. Normed Linear Spaces: 3. Norms and normed spaces
4. Complete normed spaces
5. Finite-dimensional normed spaces
6. Spaces of continuous functions
7. Completions and the Lebesgue spaces Lp(¿)
Part III. Hilbert Spaces: 8. Hilbert spaces
9. Orthonormal sets and orthonormal bases for Hilbert spaces
10. Closest points and approximation
11. Linear maps between normed spaces
12. Dual spaces and the Riesz representation theorem
13. The Hilbert adjoint of a linear operator
14. The spectrum of a bounded linear operator
15. Compact linear operators
16. The Hilbert-Schmidt theorem
17. Application: Sturm-Liouville problems
Part IV. Banach Spaces: 18. Dual spaces of Banach spaces
19. The Hahn-Banach theorem
20. Some applications of the Hahn-Banach theorem
21. Convex subsets of Banach spaces
22. The principle of uniform boundedness
23. The open mapping, inverse mapping, and closed graph theorems
24. Spectral theory for compact operators
25. Unbounded operators on Hilbert spaces
26. Reflexive spaces
27. Weak and weak-* convergence
Appendix A. Zorn's lemma
Appendix B. Lebesgue integration
Appendix C. The Banach-Alaoglu theorem
Solutions to exercises
References
Index.
2. Metric spaces
Part II. Normed Linear Spaces: 3. Norms and normed spaces
4. Complete normed spaces
5. Finite-dimensional normed spaces
6. Spaces of continuous functions
7. Completions and the Lebesgue spaces Lp(¿)
Part III. Hilbert Spaces: 8. Hilbert spaces
9. Orthonormal sets and orthonormal bases for Hilbert spaces
10. Closest points and approximation
11. Linear maps between normed spaces
12. Dual spaces and the Riesz representation theorem
13. The Hilbert adjoint of a linear operator
14. The spectrum of a bounded linear operator
15. Compact linear operators
16. The Hilbert-Schmidt theorem
17. Application: Sturm-Liouville problems
Part IV. Banach Spaces: 18. Dual spaces of Banach spaces
19. The Hahn-Banach theorem
20. Some applications of the Hahn-Banach theorem
21. Convex subsets of Banach spaces
22. The principle of uniform boundedness
23. The open mapping, inverse mapping, and closed graph theorems
24. Spectral theory for compact operators
25. Unbounded operators on Hilbert spaces
26. Reflexive spaces
27. Weak and weak-* convergence
Appendix A. Zorn's lemma
Appendix B. Lebesgue integration
Appendix C. The Banach-Alaoglu theorem
Solutions to exercises
References
Index.
Part I. Preliminaries: 1. Vector spaces and bases
2. Metric spaces
Part II. Normed Linear Spaces: 3. Norms and normed spaces
4. Complete normed spaces
5. Finite-dimensional normed spaces
6. Spaces of continuous functions
7. Completions and the Lebesgue spaces Lp(¿)
Part III. Hilbert Spaces: 8. Hilbert spaces
9. Orthonormal sets and orthonormal bases for Hilbert spaces
10. Closest points and approximation
11. Linear maps between normed spaces
12. Dual spaces and the Riesz representation theorem
13. The Hilbert adjoint of a linear operator
14. The spectrum of a bounded linear operator
15. Compact linear operators
16. The Hilbert-Schmidt theorem
17. Application: Sturm-Liouville problems
Part IV. Banach Spaces: 18. Dual spaces of Banach spaces
19. The Hahn-Banach theorem
20. Some applications of the Hahn-Banach theorem
21. Convex subsets of Banach spaces
22. The principle of uniform boundedness
23. The open mapping, inverse mapping, and closed graph theorems
24. Spectral theory for compact operators
25. Unbounded operators on Hilbert spaces
26. Reflexive spaces
27. Weak and weak-* convergence
Appendix A. Zorn's lemma
Appendix B. Lebesgue integration
Appendix C. The Banach-Alaoglu theorem
Solutions to exercises
References
Index.
2. Metric spaces
Part II. Normed Linear Spaces: 3. Norms and normed spaces
4. Complete normed spaces
5. Finite-dimensional normed spaces
6. Spaces of continuous functions
7. Completions and the Lebesgue spaces Lp(¿)
Part III. Hilbert Spaces: 8. Hilbert spaces
9. Orthonormal sets and orthonormal bases for Hilbert spaces
10. Closest points and approximation
11. Linear maps between normed spaces
12. Dual spaces and the Riesz representation theorem
13. The Hilbert adjoint of a linear operator
14. The spectrum of a bounded linear operator
15. Compact linear operators
16. The Hilbert-Schmidt theorem
17. Application: Sturm-Liouville problems
Part IV. Banach Spaces: 18. Dual spaces of Banach spaces
19. The Hahn-Banach theorem
20. Some applications of the Hahn-Banach theorem
21. Convex subsets of Banach spaces
22. The principle of uniform boundedness
23. The open mapping, inverse mapping, and closed graph theorems
24. Spectral theory for compact operators
25. Unbounded operators on Hilbert spaces
26. Reflexive spaces
27. Weak and weak-* convergence
Appendix A. Zorn's lemma
Appendix B. Lebesgue integration
Appendix C. The Banach-Alaoglu theorem
Solutions to exercises
References
Index.