Stephen Blyth (Professor of the Practice of Statistics and Managing
An Introduction to Quantitative Finance
Stephen Blyth (Professor of the Practice of Statistics and Managing
An Introduction to Quantitative Finance
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types. This book gives an insight into financial engineering while building on introductory probability courses by detailing one of the most fascinating applications of the subject.
Andere Kunden interessierten sich auch für
- Wilson A. Sutherland (Oxford Emeritus Fellow of New College)Introduction to Metric and Topological Spaces66,99 €
- P. A. Davidson (Professor of fluid me Professor of fluid mechanicsAn Introduction to Electrodynamics77,99 €
- Mark H. A. Davis (Department of Mathematics Senior Research FellowMathematical Finance16,99 €
- Bernard Lapeyre (, Ecole Nationale des Ponts et Chaussees, Marne-laIntroduction to Monte-Carlo Methods for Transport and Diffusion Equations83,99 €
- Stefan Thurner (Full Full Professor of Science of Complex SystemsIntroduction to the Theory of Complex Systems102,99 €
- Gergely DarocziIntroduction to R for Quantitative Finance44,99 €
- Doug FletcherHow to Win Client Business When You Don't Know Where to Start28,99 €
-
-
-
The quantitative nature of complex financial transactions makes them a fascinating subject area for mathematicians of all types. This book gives an insight into financial engineering while building on introductory probability courses by detailing one of the most fascinating applications of the subject.
Produktdetails
- Produktdetails
- Verlag: Oxford University Press
- Seitenzahl: 192
- Erscheinungstermin: 1. Dezember 2013
- Englisch
- Abmessung: 233mm x 154mm x 15mm
- Gewicht: 304g
- ISBN-13: 9780199666591
- ISBN-10: 0199666598
- Artikelnr.: 39373946
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Oxford University Press
- Seitenzahl: 192
- Erscheinungstermin: 1. Dezember 2013
- Englisch
- Abmessung: 233mm x 154mm x 15mm
- Gewicht: 304g
- ISBN-13: 9780199666591
- ISBN-10: 0199666598
- Artikelnr.: 39373946
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Stephen Blyth is managing director and head of public markets at the Harvard Management Company, the subsidiary of Harvard University responsible for the management of the University's endowment. He is also Professor of the Practice of Statistics at Harvard University. Before joining Harvard in 2006, Professor Blyth was managing director and head of the Global Rates proprietary trading group at Deutsche Bank in London, and managing director in the Interest Rate Group at Morgan Stanley in New York. Professor Blyth is a frequent speaker at international finance conferences and has written widely on issues facing practitioners in applied quantitative finance and in derivative markets. He holds a PhD in Statistics from Harvard University and an MA in Mathematics with first class honours from Christ's College, Cambridge University, where he is a Lady Margaret Beaufort Fellow. He was formerly a Lecturer in Mathematics at Imperial College London.
I Introduction and Preliminaries
1: Introduction
2: Preliminaries
II Forwards, Swaps and Options
3: Forward contracts and forward prices
4: Forward rates and libor
5: Interest rate swaps
6: Futures contracts
7: No-arbitrage principle
8: Options
III Replication, risk-neutrality and the fundamental theorem
9: Replication and risk-neutrality on the binomial tree
10: Martingales, numeraires and the fundamental theorem
11: Continuous time limit and Black-Scholes formula
12: Option price and probability duality
IV Interest Rate Options
13: Caps, floors and swaptions
14: Cancellable swaps and Bermudan swaptions
15: Additional topics in interest rate derivatives
V Through Continuous Time
16: Rough guide to continuous time
1: Introduction
2: Preliminaries
II Forwards, Swaps and Options
3: Forward contracts and forward prices
4: Forward rates and libor
5: Interest rate swaps
6: Futures contracts
7: No-arbitrage principle
8: Options
III Replication, risk-neutrality and the fundamental theorem
9: Replication and risk-neutrality on the binomial tree
10: Martingales, numeraires and the fundamental theorem
11: Continuous time limit and Black-Scholes formula
12: Option price and probability duality
IV Interest Rate Options
13: Caps, floors and swaptions
14: Cancellable swaps and Bermudan swaptions
15: Additional topics in interest rate derivatives
V Through Continuous Time
16: Rough guide to continuous time
I Introduction and Preliminaries
1: Introduction
2: Preliminaries
II Forwards, Swaps and Options
3: Forward contracts and forward prices
4: Forward rates and libor
5: Interest rate swaps
6: Futures contracts
7: No-arbitrage principle
8: Options
III Replication, risk-neutrality and the fundamental theorem
9: Replication and risk-neutrality on the binomial tree
10: Martingales, numeraires and the fundamental theorem
11: Continuous time limit and Black-Scholes formula
12: Option price and probability duality
IV Interest Rate Options
13: Caps, floors and swaptions
14: Cancellable swaps and Bermudan swaptions
15: Additional topics in interest rate derivatives
V Through Continuous Time
16: Rough guide to continuous time
1: Introduction
2: Preliminaries
II Forwards, Swaps and Options
3: Forward contracts and forward prices
4: Forward rates and libor
5: Interest rate swaps
6: Futures contracts
7: No-arbitrage principle
8: Options
III Replication, risk-neutrality and the fundamental theorem
9: Replication and risk-neutrality on the binomial tree
10: Martingales, numeraires and the fundamental theorem
11: Continuous time limit and Black-Scholes formula
12: Option price and probability duality
IV Interest Rate Options
13: Caps, floors and swaptions
14: Cancellable swaps and Bermudan swaptions
15: Additional topics in interest rate derivatives
V Through Continuous Time
16: Rough guide to continuous time