Analysis at Urbana
Volume 1, Analysis in Function Spaces
Herausgeber: Berkson, Earl R.; Uhl, J.; Peck, N. T.
Analysis at Urbana
Volume 1, Analysis in Function Spaces
Herausgeber: Berkson, Earl R.; Uhl, J.; Peck, N. T.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book lays emphasis on the synthesis of modern and classical analysis at the current frontiers of knowledge.
Andere Kunden interessierten sich auch für
Martin SchechterAn Introduction to Nonlinear Analysis68,99 €
T. M. FlettDifferential Analysis62,99 €
P. S. MilojevicNonlinear Functional Analysis329,99 €
Przemysaw WojtaszczykBanach Spaces for Analysts73,99 €
Béatrice M RivièreDiscontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations86,99 €
Joe DiestelAbsolutely Summing Operators81,99 €
Jean-Paul GauthierDeterministic Observation Theory and Applications47,99 €-
-
-
This book lays emphasis on the synthesis of modern and classical analysis at the current frontiers of knowledge.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 436
- Erscheinungstermin: 29. Februar 2008
- Englisch
- Abmessung: 229mm x 152mm x 26mm
- Gewicht: 704g
- ISBN-13: 9780521364362
- ISBN-10: 0521364361
- Artikelnr.: 23580887
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 436
- Erscheinungstermin: 29. Februar 2008
- Englisch
- Abmessung: 229mm x 152mm x 26mm
- Gewicht: 704g
- ISBN-13: 9780521364362
- ISBN-10: 0521364361
- Artikelnr.: 23580887
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
1. Membership of Hankel operators on planar domains in unitary ideals J.
Arazy; 2. A generalised Marcel Riesz theorem on conjugate functions N.
Asmar and E. Hewitt; 3. Some results in analysis related to the law of the
iterated logarithm R. Banuelos and C. Moore; 4. Fourier series, mean
Lipschitz spaces and bounded mean oscillation P. Bourdon, J. Shapiro and W
.Sledd; 5. A remark on the maximal function associated to an analytic
vector field J. Bourgain; 6. Hankel operators on HP J. Cima and D.
Stegenga; 7. Contractive projections on 1p spaces W. Davis and P. Enflo; 8.
Contractive projections onto subsets of L1(0,1) P. Enflo; 9. Some Banach
space properties of translation invariant subspaces of LP K. Hare and N.
Tomczak-Jaegermann; 10. Random multiplications, random coverings, and
multiplicative chaos J.-P. Kahane; 11. Wavelets and operators Y. Meyer; 12.
On the structure of the graph of the Franklin analysing wavelet E. Berkson;
13. Boundededness of the canonical projection for Sobolev spaces generated
by finite families of linear differential operators A. Pelczynski; 14.
Remarks on L2 restriction theorems for Riemann manifolds C. Sogge.
Arazy; 2. A generalised Marcel Riesz theorem on conjugate functions N.
Asmar and E. Hewitt; 3. Some results in analysis related to the law of the
iterated logarithm R. Banuelos and C. Moore; 4. Fourier series, mean
Lipschitz spaces and bounded mean oscillation P. Bourdon, J. Shapiro and W
.Sledd; 5. A remark on the maximal function associated to an analytic
vector field J. Bourgain; 6. Hankel operators on HP J. Cima and D.
Stegenga; 7. Contractive projections on 1p spaces W. Davis and P. Enflo; 8.
Contractive projections onto subsets of L1(0,1) P. Enflo; 9. Some Banach
space properties of translation invariant subspaces of LP K. Hare and N.
Tomczak-Jaegermann; 10. Random multiplications, random coverings, and
multiplicative chaos J.-P. Kahane; 11. Wavelets and operators Y. Meyer; 12.
On the structure of the graph of the Franklin analysing wavelet E. Berkson;
13. Boundededness of the canonical projection for Sobolev spaces generated
by finite families of linear differential operators A. Pelczynski; 14.
Remarks on L2 restriction theorems for Riemann manifolds C. Sogge.
1. Membership of Hankel operators on planar domains in unitary ideals J.
Arazy; 2. A generalised Marcel Riesz theorem on conjugate functions N.
Asmar and E. Hewitt; 3. Some results in analysis related to the law of the
iterated logarithm R. Banuelos and C. Moore; 4. Fourier series, mean
Lipschitz spaces and bounded mean oscillation P. Bourdon, J. Shapiro and W
.Sledd; 5. A remark on the maximal function associated to an analytic
vector field J. Bourgain; 6. Hankel operators on HP J. Cima and D.
Stegenga; 7. Contractive projections on 1p spaces W. Davis and P. Enflo; 8.
Contractive projections onto subsets of L1(0,1) P. Enflo; 9. Some Banach
space properties of translation invariant subspaces of LP K. Hare and N.
Tomczak-Jaegermann; 10. Random multiplications, random coverings, and
multiplicative chaos J.-P. Kahane; 11. Wavelets and operators Y. Meyer; 12.
On the structure of the graph of the Franklin analysing wavelet E. Berkson;
13. Boundededness of the canonical projection for Sobolev spaces generated
by finite families of linear differential operators A. Pelczynski; 14.
Remarks on L2 restriction theorems for Riemann manifolds C. Sogge.
Arazy; 2. A generalised Marcel Riesz theorem on conjugate functions N.
Asmar and E. Hewitt; 3. Some results in analysis related to the law of the
iterated logarithm R. Banuelos and C. Moore; 4. Fourier series, mean
Lipschitz spaces and bounded mean oscillation P. Bourdon, J. Shapiro and W
.Sledd; 5. A remark on the maximal function associated to an analytic
vector field J. Bourgain; 6. Hankel operators on HP J. Cima and D.
Stegenga; 7. Contractive projections on 1p spaces W. Davis and P. Enflo; 8.
Contractive projections onto subsets of L1(0,1) P. Enflo; 9. Some Banach
space properties of translation invariant subspaces of LP K. Hare and N.
Tomczak-Jaegermann; 10. Random multiplications, random coverings, and
multiplicative chaos J.-P. Kahane; 11. Wavelets and operators Y. Meyer; 12.
On the structure of the graph of the Franklin analysing wavelet E. Berkson;
13. Boundededness of the canonical projection for Sobolev spaces generated
by finite families of linear differential operators A. Pelczynski; 14.
Remarks on L2 restriction theorems for Riemann manifolds C. Sogge.







