103,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
52 °P sammeln
  • Gebundenes Buch

Applying artificial intelligence (AI) to new fields has made AI and data science indispensable to researchers in a wide range of fields. The proliferation and successful deployment of AI algorithms are fuelling these changes, which can be seen in fields as disparate as healthcare and emerging Internet of Things (IoT) applications. Machine learning techniques, and AI more broadly, are expected to play an ever-increasing role in the modelling, simulation, and analysis of data from a wide range of fields by the interdisciplinary research community. Ideas and techniques from multidisciplinary…mehr

Produktbeschreibung
Applying artificial intelligence (AI) to new fields has made AI and data science indispensable to researchers in a wide range of fields. The proliferation and successful deployment of AI algorithms are fuelling these changes, which can be seen in fields as disparate as healthcare and emerging Internet of Things (IoT) applications. Machine learning techniques, and AI more broadly, are expected to play an ever-increasing role in the modelling, simulation, and analysis of data from a wide range of fields by the interdisciplinary research community. Ideas and techniques from multidisciplinary research are being utilised to enhance AI; hence, the connection between the two fields is a two-way street at a crossroads. Algorithms for inference, sampling, and optimisation, as well as investigations into the efficacy of deep learning, frequently make use of methods and concepts from other fields of study. Cloud computing platforms may be used to develop and deploy several AI models with high computational power. The intersection between multiple fields, including math, science, and healthcare, is where the most significant theoretical and methodological problems of AI may be found. To gather, integrate, and synthesise the many results and viewpoints in the connected domains, refer to it as interdisciplinary research. In light of this, the theory, techniques, and applications of machine learning and AI, as well as how they are utilised across disciplinary boundaries, are the main areas of this research topic.
This book apprises the readers about the important and cutting-edge aspects of AI applications for interdisciplinary research and guides them to apply their acquaintance in the best possible mannerThis book is formulated with the intent of uncovering the stakes and possibilities involved in using AI through efficient interdisciplinary applicationsThe main objective of this book is to provide scientific and engineering research on technologies in the fields of AI and data science and how they can be related through interdisciplinary applications and similar technologiesThis book covers various important domains, such as healthcare, the stock market, natural language processing (NLP), real estate, data security, cloud computing, edge computing, data visualisation using cloud platforms, event management systems, IoT, the telecom sector, federated learning, and network performance optimisation. Each chapter focuses on the corresponding subject outline to offer readers a thorough grasp of the concepts and technologies connected to AI and data analytics, and their emerging applications
Autorenporträt
Dr. Sukhpal Singh Gill (FHEA) is a Assistant Professor in Cloud Computing at School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London (QMUL), UK and he is a member of Network Research Group. Prior to this, Dr. Gill has held positions as a Research Associate at Evolving Distributed Systems Lab at the School of Computing and Communications, Lancaster University, UK and also as a Postdoctoral Research Fellow at the Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia. He has published his PGCAP/PGCert work in highly-ranked Education Conferences and Journals. Before joining CLOUDS Lab, Dr. Gill worked in the Computer Science and Engineering Department of Thapar University, India, as a Lecturer. Dr. Gill received a Doctoral Degree specialization in Autonomic Cloud Computing from Thapar University. He worked as a Senior Research Fellow (Professional) on DST Project, Government of India. Dr. Gill was a research visitor at Monash University, University of Manitoba, University of Manchester and Imperial College London. He has recieved several awards. He has also served as the PC member for various venues. He has co-authored 150+ peer-reviewed papers and has published in prominent international journals and conferences. He serves as a Guest Editor and is a regular reviewer for multiple journals. He has also edited multiple research books He has also written for magazines such as Ars Technica, Tech Monitor, Cutter Consortium and ICT Academy. For further information, visit www.ssgill.me.