18,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
9 °P sammeln
  • Broschiertes Buch

The click-through rate on web ads measures the number of clicks they receive from all customers who view them from web browsers.This paper, with the aim of anticipating customer preferences, proposes an approach that uses AI and ML to design and implement hyper-personalized experiences to automate the complex tasks related to predicting customer behaviors to better understand them and offer them intelligent web advertising.The proposed approach is based on granular customer segmentation, dynamic content adaptation, precise product recommendations and predictive analysis. To implement cognitive…mehr

Produktbeschreibung
The click-through rate on web ads measures the number of clicks they receive from all customers who view them from web browsers.This paper, with the aim of anticipating customer preferences, proposes an approach that uses AI and ML to design and implement hyper-personalized experiences to automate the complex tasks related to predicting customer behaviors to better understand them and offer them intelligent web advertising.The proposed approach is based on granular customer segmentation, dynamic content adaptation, precise product recommendations and predictive analysis. To implement cognitive functions, data comes from Chatbots processed with data analysis, multivariate testing, attribution modeling and predictive optimization.A case study is discussed and the solution proposed and programmed with the Python language and its machine learning libraries: Pandas, NumPy, Matplotlib and Scikit-learn.
Autorenporträt
Bilal SGUIRI ist ein junger Forscher, der sich für Informatik im Allgemeinen und insbesondere für künstliche Intelligenz und maschinelles Lernen interessiert. Seine Forschung entwickelt Algorithmen für Maschinen, die in der Lage sind, menschliche kognitive Prozesse zu simulieren, damit diese selbstständig lernen und sich verbessern können.