Jacob Cohen, Patricia Cohen, Stephen G. West
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Jacob Cohen, Patricia Cohen, Stephen G. West
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Classic text on applied multiple regression considered the bible among graduate students and researchers.
Andere Kunden interessierten sich auch für
The Reviewer's Guide to Quantitative Methods in the Social Sciences70,99 €
Thomas D. WickensThe Geometry of Multivariate Statistics154,99 €
Joel E. CollierApplied Structural Equation Modeling using AMOS62,99 €
Kimmo VehkalahtiMultivariate Analysis for the Behavioral Sciences, Second Edition102,99 €
Steven G. HeeringaApplied Survey Data Analysis125,99 €
Andy FieldDiscovering Statistics Using IBM SPSS Statistics175,99 €
Keenan A. PituchApplied Multivariate Statistics for the Social Sciences124,99 €-
-
-
Classic text on applied multiple regression considered the bible among graduate students and researchers.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Inc
- 3 ed
- Seitenzahl: 734
- Erscheinungstermin: 1. August 2002
- Englisch
- Abmessung: 260mm x 183mm x 44mm
- Gewicht: 1540g
- ISBN-13: 9780805822236
- ISBN-10: 0805822232
- Artikelnr.: 22345362
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Inc
- 3 ed
- Seitenzahl: 734
- Erscheinungstermin: 1. August 2002
- Englisch
- Abmessung: 260mm x 183mm x 44mm
- Gewicht: 1540g
- ISBN-13: 9780805822236
- ISBN-10: 0805822232
- Artikelnr.: 22345362
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Jacob Cohen (Author) , Patricia Cohen (Author) , Stephen G. West (Author) , Leona S. Aiken (Author)
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Contents: Preface. Introduction. Bivariate Correlation and Regression.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.
Multiple Regression/Correlation With Two or More Independent Variables.
Data Visualization, Exploration, and Assumption Checking: Diagnosing and
Solving Regression Problems I. Data-Analytic Strategies Using Multiple
Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and
Transformations. Interactions Among Continuous Variables. Categorical or
Nominal Independent Variables. Interactions With Categorical Variables.
Outliers and Multicollinearity: Diagnosing and Solving Regression Problems
II. Missing Data. Multiple Regression/Correlation and Causal Models.
Alternative Regression Models: Logistic, Poisson Regression, and the
Generalized Linear Model. Random Coefficient Regression and Multilevel
Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set
Correlation. Appendices: The Mathematical Basis for Multiple
Regression/Correlation and Identification of the Inverse Matrix Elements.
Determination of the Inverse Matrix and Applications Thereof.







