With the increasing penetration of renewable energy and distributed energy resources, smart grid is facing great challenges, which could be divided into two categories. On the one hand, the endogenous uncertainties of renewable energy and electricity load lead to great difficulties in smart grid forecast. On the other hand, massive electric devices as well as their complex constraint relationships bring about significant difficulties in smart grid dispatch. Owe to the rapid development of artificial intelligence in recent years, several artificial intelligence enabled computational methods…mehr
With the increasing penetration of renewable energy and distributed energy resources, smart grid is facing great challenges, which could be divided into two categories. On the one hand, the endogenous uncertainties of renewable energy and electricity load lead to great difficulties in smart grid forecast. On the other hand, massive electric devices as well as their complex constraint relationships bring about significant difficulties in smart grid dispatch.
Owe to the rapid development of artificial intelligence in recent years, several artificial intelligence enabled computational methods have been successfully applied in the smart grid and achieved good performances. Therefore, this book is concerned with the research on the key issues of artificial intelligence enabled computational methods for smart grid forecast and dispatch, which consist of three main parts.
(1) Introduction for smart grid forecast and dispatch, in inclusion of reviewing previous contribution of various research methods as well as their drawbacks to analyze characteristics of smart grid forecast and dispatch.
(2) Artificial intelligence enabled computational methods for smart grid forecast problems, which are devoted to present the recent approaches of deep learning and machine learning as well as their successful applications in smart grid forecast.
(3) Artificial intelligence enabled computational methods for smart grid dispatch problems, consisting of edge-cutting intelligent decision-making approaches, which help determine the optimal solution of smart grid dispatch.
The book is useful for university researchers, engineers, and graduate students in electrical engineering and computer science who wish to learn the core principles, methods, algorithms, and applications of artificial intelligence enabled computational methods.
Produktdetails
Produktdetails
Engineering Applications of Computational Methods 14
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Yuanzheng Li received the M.S. degree in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2011 and the Ph.D. degree in electrical engineering from the South China University of Technology, Guangzhou, China, in 2015. He was a visiting Ph.D. student in the Department of Electrical and Electronics Engineering, University of Liverpool, UK, during January to December 2014. After obtaining the Ph.D. degree, he went to Nanyang Technical University, Singapore, and was a research fellow in School of Electrical and Electronics Engineering from June 2016 to December 2017. Currently, Dr. Li is an associate professor in School of Artificial Intelligence and Automation, Huazhong University of Science and Technology. He is also a core member of the Future Power Grid Research Institute, which is supported by STATE GRID Corporation of China. His research interests include artificial intelligence and its application in smart grid, deeplearning, reinforcement learning, optimal power system/microgrid dispatch and decision making, stochastic optimization considering large-scale integration of renewable energy into the power system and multi-objective optimization. He has authored or coauthored several peer-reviewed papers in international journals, including more than 40 IEEE Transactions papers. Some of the papers have been selected as Feature Article, ESI Highly Cited Paper, Best Conference Award, Highly Cited Journal Paper, etc. He is the associate editor of IEEE Transactions on Intelligent Vehicles and IET Renewable Power Generation. Yong Zhao received the M.S. degree and Ph.D. degree in system engineering from the Huazhong University of Science and Technology, Wuhan, China, in 1992 and 1996, respectively. He was then a postdoc in mechanical engineering during 1996 to 1998. He was promoted as an associate professor and a full professor in School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, in 1998 and 2000, respectively. He was a visiting scholar in the Department of System Engineering, University of Oxford, UK, during 2005 to 2006. Currently, he is the vice director of Future Power Grid Research Institute, which is supported by STATE GRID Corporation of China. His research interests include decision-making theory, operation research, power system markets, integrated energy systems, and smart grids. He has authored or coauthored several peer-reviewed papers in international journals and supervised more than 20 Ph.D. students. Lei Wu received the B.S. degree in electrical engineering and the M.S. degree in systems engineering from Xi'an Jiaotong University, Xi'an, China, in 2001 and 2004, respectively, and the Ph.D. degree in electrical engineering from Illinois Institute of Technology (IIT), Chicago, IL, USA, in 2008. From 2008 to 2010, he was a senior research associate with the Robert W. Galvin Center for Electricity Innovation, IIT. He was a professor with the Electrical and Computer Engineering Department, Clarkson University, Potsdam, NY, USA, till 2018. He is currently a professor with the Electrical and Computer Engineering Department, Stevens Institute of Technology, Hoboken, NJ. His primary research and teaching areas are focused on power and energy system optimization and control, with specific interests in the modeling of large-scale power systems with a high penetration of demand response and renewable energy, and community resilience microgrid. He is the recipient of Transactions Prize Paper Award from the IEEE Power and Energy Society (PES) in 2009 and the IEEE PES Student Prize Paper Award in Honor of T. Burke Hayes as an adviser in 2014. He is an IEEE fellow. Zhigang Zeng received the Ph.D. degree in systems analysis and integration from Huazhong University of Scienceand Technology, Wuhan, China, in 2003. He is currently a professor with the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China. He has published more than 100 international journal articles. His current research interests include theory of functional differential equations and differential equations with discontinuous right-hand sides and their applications to dynamics of neural networks, memristive systems, and control systems. Professor Zeng was an associate editor of the IEEE Transactions on Neural Networks and Learning Systems from 2010 to 2011. He has been an associate editor of the IEEE Transactions on Cybernetics since 2014 and the IEEE Transactions on Fuzzy Systems since 2016 and a member of the Editorial Board of Neural Networks since 2012, Cognitive Computation since 2010, and Applied Soft Computing since 2013. Professor Zeng is currently the director of KeyLaboratory of Image Processing and Intelligent Control of the Education Ministry of China, Huazhong University of Science and Technology, Wuhan, China. He is also a Cheung Kong scholar and the receiver of Outstanding Fund of National Natural Science Foundation of China. He is an IEEE fellow.
Inhaltsangabe
Chapter 1: Introduction for Smart Grid Forecast and Dispatch.- Chapter 2: Review for Smart Grid Forecast.- Chapter 3: Review for Smart Grid Dispatch.- Chapter 4: Deep Learning Based Densely Connected Network for Load Forecast.- Chapter 5: Reinforcement Learning Assisted Deep Learning for Probabilistic Charging Power Forecast of Electric Vehicles.- Chapter 6: Dense Skip Attention based Deep Learning for Day-Ahead Electricity Price Forecast with a Drop-Connected Structure.- Chapter 7: Dirichlet Process Mixture Model Based on Relevant Data for Uncertainty Characterization of Net Load.- Chapter 8: Extreme Learning Machine for Economic Dispatch with High Penetration of Wind Power.- Chapter 9: Data-driven Bayesian Assisted Optimization Algorithm for Dispatch of Highly Renewable Energy Power Systems.- Chapter 10: Multi-objective Optimization Approach for Coordinated Scheduling of Electric Vehicles-Wind Integrated Power Systems.- Chapter 11: Deep Reinforcement Learning Assisted OptimizationAlgorithm for Many-Objective Distribution Network Reconfiguration.- Chapter 12: Federated Multi-Agent Deep Reinforcement Learning Approach via Physic-Informed Reward for Multi-Microgrid Energy Management.- Chapter 13: Supply Function Game Based Energy Management Between Electric Vehicle Charging Stations and Electricity Distribution System.
Chapter 1: Introduction for Smart Grid Forecast and Dispatch.- Chapter 2: Review for Smart Grid Forecast.- Chapter 3: Review for Smart Grid Dispatch.- Chapter 4: Deep Learning Based Densely Connected Network for Load Forecast.- Chapter 5: Reinforcement Learning Assisted Deep Learning for Probabilistic Charging Power Forecast of Electric Vehicles.- Chapter 6: Dense Skip Attention based Deep Learning for Day-Ahead Electricity Price Forecast with a Drop-Connected Structure.- Chapter 7: Dirichlet Process Mixture Model Based on Relevant Data for Uncertainty Characterization of Net Load.- Chapter 8: Extreme Learning Machine for Economic Dispatch with High Penetration of Wind Power.- Chapter 9: Data-driven Bayesian Assisted Optimization Algorithm for Dispatch of Highly Renewable Energy Power Systems.- Chapter 10: Multi-objective Optimization Approach for Coordinated Scheduling of Electric Vehicles-Wind Integrated Power Systems.- Chapter 11: Deep Reinforcement Learning Assisted OptimizationAlgorithm for Many-Objective Distribution Network Reconfiguration.- Chapter 12: Federated Multi-Agent Deep Reinforcement Learning Approach via Physic-Informed Reward for Multi-Microgrid Energy Management.- Chapter 13: Supply Function Game Based Energy Management Between Electric Vehicle Charging Stations and Electricity Distribution System.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826
Wir verwenden Cookies und ähnliche Techniken, um unsere Website für Sie optimal zu gestalten und Ihr Nutzererlebnis fortlaufend zu verbessern. Ihre Einwilligung durch Klicken auf „Alle Cookies akzeptieren“ können Sie jederzeit widerrufen oder anpassen. Bei „Nur notwendige Cookies“ werden die eingesetzten Techniken, mit Ausnahme derer, die für den Betrieb der Seite unerlässlich sind, nicht aktiviert. Um mehr zu erfahren, lesen Sie bitte unsere Datenschutzerklärung.
Notwendige Cookies ermöglichen die Grundfunktionen einer Website (z. B. Seitennavigation). Sie können nicht deaktiviert werden, da eine technische Notwendigkeit besteht.
Dieser Service wird für die grundlegende technische Funktionalität von buecher.de benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Google-Diensten wie z.B. reCaptcha benötigt.
Zweck: Notwendige
Dieser Service wird für die grundlegende technische Funktionalität von Klaro der Cookie-Zustimmung benötigt.
Zweck: Notwendige
Funktionale Cookies sorgen für ein komfortables Nutzererlebnis und speichern z. B. ob Sie eingeloggt bleiben möchten. Diese Arten von Cookies dienen der „Wiedererkennung“, wenn Sie unsere Website besuchen.
Dieser Service wird für die erweiterte Funktionalität von buecher.de verwendet.
Zweck: Funktionale
Dieser Service wird verwendet, um eine sichere Anmeldung bei Google-Diensten zu ermöglichen und Ihre Sitzung zu verwalten.
Zweck: Funktionale
Personalisierung ermöglicht es uns, Inhalte und Anzeigen basierend auf Ihren Interessen und Ihrem Verhalten anzupassen. Dies umfasst die Anpassung von Empfehlungen und anderen Inhalten, um Ihre Erfahrung auf unserer Website zu verbessern.
Dieser Service wird für die Personalisierung der Besucher von buecher.de verwendet.
Zweck: Personalisierung
Wir nutzen Marketing Cookies, um die Relevanz unserer Seiten und der darauf gezeigten Werbung für Sie zu erhöhen und auf Ihre Interessen abzustimmen. Zu diesem Zweck teilen wir die Daten auch mit Drittanbietern.
Dieser Service wird für die Personalisierung von Werbung auf buecher.de verwendet.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über einen Partner aus dem Adtraction-Netzwerk zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Dieser Service wird genutzt, um nachzuvollziehen, über welche Partner-Website Sie zu uns gelangt sind. Dadurch können wir sicherstellen, dass Partner für vermittelte Verkäufe korrekt vergütet werden.
Zweck: Marketing
Dieser Service wird genutzt, um zu erfassen, ob Sie über das Preisvergleichsportal billiger.de zu uns gelangt sind. Damit kann die Vermittlung korrekt nachvollzogen und abgerechnet werden.
Zweck: Marketing
Bing ist ein Werbedienst von Microsoft, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Produktempfehlungen und Werbung basierend auf Ihrem Surfverhalten bereitzustellen.
Zweck: Marketing
Criteo ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Facebook ist ein soziales Netzwerk, das es ermöglicht, mit anderen Nutzern zu kommunizieren und verschiedene Inhalte zu teilen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Getback ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Ads ist ein Werbedienst von Google, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Google Analytics ist ein Webanalysedienst, der von Google zur Erhebung von Nutzungsdaten verwendet wird. Diese Daten ermöglichen uns, unsere Website zu optimieren und Ihnen den bestmöglichen Service zu bieten.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Werbung anzuzeigen. Dadurch können wir Ihnen relevante Angebote und Empfehlungen bereitstellen.
Zweck: Marketing
Dieser Service wird genutzt, um personalisierte Inhalte und gesponserte Empfehlungen bereitzustellen, die auf Ihrem bisherigen Nutzungsverhalten basieren.
Zweck: Marketing
RTB House ist ein Retargeting-Dienst, der es ermöglicht, personalisierte Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden. Weitere Informationen finden Sie in der RTB House-Datenschutzerklärung.
Zweck: Marketing
Dieser Service wird genutzt, um nachvollziehen zu können, über welchen Partner Sie auf unsere Website gelangt sind. So kann die Vergütung von Partnern bei erfolgreichen Vermittlungen korrekt erfolgen.
Zweck: Marketing
Xandr ist ein Werbedienst von AT&T, der es ermöglicht, Werbung auf anderen Websites anzuzeigen. Dabei können personenbezogene Daten wie Nutzungsdaten verarbeitet werden.
Zweck: Marketing
Mit diesem Schalter können Sie alle Dienste aktivieren oder deaktivieren.