133,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
67 °P sammeln
  • Broschiertes Buch

Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI,…mehr

Produktbeschreibung
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation.

The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances.
Autorenporträt
Sujata Dash is a Senior Member, IEEE who received the Ph.D. degree in computational modeling from Berhampur University, Orissa, India, in 1995. She is currently an Associate Professor with the P.G. Department of Computer Science and Application, North Orissa University, Baripada, India. She has published more than 150 technical articles in international journals, conferences, and book chapters of reputed publications. She has guided many scholars for their Ph.D. degrees in computer science. She is associated with many professional bodies like IEEE, CSI, ISTE, OITS, OMS, IACSIT, IMS, and IAENG. She is a member of the editorial board of several international journals and also reviewer of many international journals. Her current research interests include machine learning, distributed data mining, bioinformatics, intelligent agent, Web data mining, recommender systems, and image processing.