Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis discusses various white- and black-box approaches to fault diagnosis in condition monitoring (CM). This indispensable resource: Addresses nearest-neighbor-based, clustering-based, statistical, and information theory-based techniques Considers the merits of each technique as well as the issues associated with real-life application Covers classification methods, from neural networks to Bayesian and support vector machines Proposes fuzzy logic to explain the uncertainties associated with…mehr
Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis discusses various white- and black-box approaches to fault diagnosis in condition monitoring (CM). This indispensable resource:
Addresses nearest-neighbor-based, clustering-based, statistical, and information theory-based techniques
Considers the merits of each technique as well as the issues associated with real-life application
Covers classification methods, from neural networks to Bayesian and support vector machines
Proposes fuzzy logic to explain the uncertainties associated with diagnostic processes
Provides data sets, sample signals, and MATLAB® code for algorithm testing
Artificial Intelligence Tools: Decision Support Systems in Condition Monitoring and Diagnosis delivers a thorough evaluation of the latest AI tools for CM, describing the most common fault diagnosis techniques used and the data acquired when these techniques are applied.
Diego Galar Pascual holds an M.Sc and Ph.D from Saragossa University, Zaragoza, Spain. He has been a professor at several universities, including Saragossa University and the European University of Madrid, Spain. At Saragossa University, he also served as director of academic innovation, director of international relations, pro-vice-chancellor, and senior researcher in the Aragon Institute of Engineering Research (i3A). In addition, he has been the technological director and CBM manager of international firms such as Volvo, Saab, Boliden, Scania, Tetrapak, Heinz, and Atlas Copco. Currently, he is the professor of condition monitoring in the Division of Operation and Maintenance of the Luleå University of Technology (LTU), Sweden, where he also is involved with the LTU-SKF University Technology Center. Widely published, Dr. Galar Pascual serves as a visiting professor at the University of Valencia (Spain), Polytechnic of Braganza (Portugal), Valley University (Mexico), Sunderland University (UK), University of Maryland (College Park, USA), and Northern Illinois University (DeKalb, USA).
Inhaltsangabe
Massive Field Data Collection: Issues and Challenges. Condition Monitoring: Available Techniques. Challenges of Condition Monitoring Using AI Techniques. Input and Output Data. Two Stage Response Surface Approaches to Modeling Drug Interaction. Nearest Neighbor Based Techniques. Clustering Based Techniques. Statistical Techniques. Information Theory Based Techniques. Uncertainty Management.
Massive Field Data Collection: Issues and Challenges. Condition Monitoring: Available Techniques. Challenges of Condition Monitoring Using AI Techniques. Input and Output Data. Two Stage Response Surface Approaches to Modeling Drug Interaction. Nearest Neighbor Based Techniques. Clustering Based Techniques. Statistical Techniques. Information Theory Based Techniques. Uncertainty Management.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826