Samuele Anni, Jay Jorgenson, Lejla Smajlovic, Lynne Walling
Automorphic Forms and Related Topics
Herausgeber: Jorgenson, Jay; Anni, Samuele; Walling, Lynne; Smajlovic, Lejla
Samuele Anni, Jay Jorgenson, Lejla Smajlovic, Lynne Walling
Automorphic Forms and Related Topics
Herausgeber: Jorgenson, Jay; Anni, Samuele; Walling, Lynne; Smajlovic, Lejla
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Addresses various aspects of the theory of automorphic forms and its relations with the theory of $L$-functions, the theory of elliptic curves, and representation theory. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to â build bridgesâ to mathematical questions in other fields.
Addresses various aspects of the theory of automorphic forms and its relations with the theory of $L$-functions, the theory of elliptic curves, and representation theory. This volume is intended for researchers interested in expanding their own areas of focus, thus allowing them to â build bridgesâ to mathematical questions in other fields.
Produktdetails
- Produktdetails
- Contemporary Mathematics
- Verlag: American Mathematical Society
- Seitenzahl: 286
- Erscheinungstermin: 30. Juli 2019
- Englisch
- Abmessung: 177mm x 253mm x 17mm
- Gewicht: 424g
- ISBN-13: 9781470435257
- ISBN-10: 147043525X
- Artikelnr.: 69194142
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Contemporary Mathematics
- Verlag: American Mathematical Society
- Seitenzahl: 286
- Erscheinungstermin: 30. Juli 2019
- Englisch
- Abmessung: 177mm x 253mm x 17mm
- Gewicht: 424g
- ISBN-13: 9781470435257
- ISBN-10: 147043525X
- Artikelnr.: 69194142
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Samuele Anni, University of Luxembourg, Esch-sur-Alzette, Luxembourg. Jay Jorgenson, City College of New York, NY. Lejla Smajlovic, University of Sarajevo, Bosnia and Herzegovina. Lynne Walling, University of Bristol, United Kingdom.
1. S. Anni, A note on the minimal level of realization for a mod $\ell$
eigenvalue system
2. A. Arnold-Roksandich, A discussion on the number eta-quotients of prime
level
3. C. Burrin, Dedekind sums, reciprocity, and non-arithmetic groups
4. G. Chinta, I. Horozov, and C. O'Sullivan, Noncommutative modular symbols
and Eisenstein series
5. A. Espinosa, An annotated discussion of a panel presentation on improving
diversity in mathematics
6. J. S. Friedman, J. Jorgenson, and L. Smajlovic, Superzeta functions,
regularized products, and the Selberg zeta function on hyperbolic manifolds
with cusps
7. X. Guitart and M. Masdeu, Computing $p$-adic periods of abelian varieties
from automorphic forms
8. A. Haensch and B. Kane, An algebraic and analytic approach to spinor
exceptional behavior in translated lattices
9. A. K. Jha and B. Sahu, Differential operators on Jacobi forms and special
values of certain Dirichlet series
10. J. Jorgenson and L. Smajlovic, Some results in study of Kronecker limit
formula and Dedekind sums
11. D. Kelmer, Equidistribution of shears and their arithmetic applications
12. K. Khuri-Makdisi, Fake proofs for identities involving products of
Eisenstein series
13. K. Khuri-Makdisi, Modular forms constructed from moduli of elliptic curves,
with applications to explicit models of modular curves
14. B. Kumar, J. Meher, and S. Pujahari, Some remarks on the coefficients of
symmetric power $L$-functions
15. J. Li, On primes in arithmetic progressions
16. B. Linowitz and L. Thompson, The Fourier coefficients of Eisenstein series
newforms
17. K. Maurischat, Properties of Sturm's formula
18. A. Odzak and L. Sceta, An application of a special form of a Tauberian
theorem
19. A. Odzak and L. Sceta, On the zeros of some $L$ functions from the extended
Selberg class
20. E. Ozman, Rational points on twisted modular curves
21. B. Ramakrishnan, B. Sahu, and A. K. Singh, On the number of representations
of certain quadratic forms in 8 variables
22. M. Roy, Level of Siegel modular forms constructed via $\textrm{sym}^3$
lifting
23. F. Stromberg, Dimension formulas and kernel functions for Hilbert modular
forms
24. H. Then, An explicit evaluation of the Hauptmoduli at elliptic points for
certain arithmetic groups
25. A. Trbovic, Torsion groups of elliptic curves over quadratic fields
26. S. Wagh, Maass space for lifting from SL(2,$\mathbb{R}$) to GL(2,B) over a
division quaternion algebra
27. N. Walji, On the occurrence of large positive Hecke eigenvalues for GL(2)
28. L. H. Walling, Representations by quadratic forms and the Eichler
Commutation Relation
29. S. Yamana, Degenerate principal series and Langlands classification.
eigenvalue system
2. A. Arnold-Roksandich, A discussion on the number eta-quotients of prime
level
3. C. Burrin, Dedekind sums, reciprocity, and non-arithmetic groups
4. G. Chinta, I. Horozov, and C. O'Sullivan, Noncommutative modular symbols
and Eisenstein series
5. A. Espinosa, An annotated discussion of a panel presentation on improving
diversity in mathematics
6. J. S. Friedman, J. Jorgenson, and L. Smajlovic, Superzeta functions,
regularized products, and the Selberg zeta function on hyperbolic manifolds
with cusps
7. X. Guitart and M. Masdeu, Computing $p$-adic periods of abelian varieties
from automorphic forms
8. A. Haensch and B. Kane, An algebraic and analytic approach to spinor
exceptional behavior in translated lattices
9. A. K. Jha and B. Sahu, Differential operators on Jacobi forms and special
values of certain Dirichlet series
10. J. Jorgenson and L. Smajlovic, Some results in study of Kronecker limit
formula and Dedekind sums
11. D. Kelmer, Equidistribution of shears and their arithmetic applications
12. K. Khuri-Makdisi, Fake proofs for identities involving products of
Eisenstein series
13. K. Khuri-Makdisi, Modular forms constructed from moduli of elliptic curves,
with applications to explicit models of modular curves
14. B. Kumar, J. Meher, and S. Pujahari, Some remarks on the coefficients of
symmetric power $L$-functions
15. J. Li, On primes in arithmetic progressions
16. B. Linowitz and L. Thompson, The Fourier coefficients of Eisenstein series
newforms
17. K. Maurischat, Properties of Sturm's formula
18. A. Odzak and L. Sceta, An application of a special form of a Tauberian
theorem
19. A. Odzak and L. Sceta, On the zeros of some $L$ functions from the extended
Selberg class
20. E. Ozman, Rational points on twisted modular curves
21. B. Ramakrishnan, B. Sahu, and A. K. Singh, On the number of representations
of certain quadratic forms in 8 variables
22. M. Roy, Level of Siegel modular forms constructed via $\textrm{sym}^3$
lifting
23. F. Stromberg, Dimension formulas and kernel functions for Hilbert modular
forms
24. H. Then, An explicit evaluation of the Hauptmoduli at elliptic points for
certain arithmetic groups
25. A. Trbovic, Torsion groups of elliptic curves over quadratic fields
26. S. Wagh, Maass space for lifting from SL(2,$\mathbb{R}$) to GL(2,B) over a
division quaternion algebra
27. N. Walji, On the occurrence of large positive Hecke eigenvalues for GL(2)
28. L. H. Walling, Representations by quadratic forms and the Eichler
Commutation Relation
29. S. Yamana, Degenerate principal series and Langlands classification.
1. S. Anni, A note on the minimal level of realization for a mod $\ell$
eigenvalue system
2. A. Arnold-Roksandich, A discussion on the number eta-quotients of prime
level
3. C. Burrin, Dedekind sums, reciprocity, and non-arithmetic groups
4. G. Chinta, I. Horozov, and C. O'Sullivan, Noncommutative modular symbols
and Eisenstein series
5. A. Espinosa, An annotated discussion of a panel presentation on improving
diversity in mathematics
6. J. S. Friedman, J. Jorgenson, and L. Smajlovic, Superzeta functions,
regularized products, and the Selberg zeta function on hyperbolic manifolds
with cusps
7. X. Guitart and M. Masdeu, Computing $p$-adic periods of abelian varieties
from automorphic forms
8. A. Haensch and B. Kane, An algebraic and analytic approach to spinor
exceptional behavior in translated lattices
9. A. K. Jha and B. Sahu, Differential operators on Jacobi forms and special
values of certain Dirichlet series
10. J. Jorgenson and L. Smajlovic, Some results in study of Kronecker limit
formula and Dedekind sums
11. D. Kelmer, Equidistribution of shears and their arithmetic applications
12. K. Khuri-Makdisi, Fake proofs for identities involving products of
Eisenstein series
13. K. Khuri-Makdisi, Modular forms constructed from moduli of elliptic curves,
with applications to explicit models of modular curves
14. B. Kumar, J. Meher, and S. Pujahari, Some remarks on the coefficients of
symmetric power $L$-functions
15. J. Li, On primes in arithmetic progressions
16. B. Linowitz and L. Thompson, The Fourier coefficients of Eisenstein series
newforms
17. K. Maurischat, Properties of Sturm's formula
18. A. Odzak and L. Sceta, An application of a special form of a Tauberian
theorem
19. A. Odzak and L. Sceta, On the zeros of some $L$ functions from the extended
Selberg class
20. E. Ozman, Rational points on twisted modular curves
21. B. Ramakrishnan, B. Sahu, and A. K. Singh, On the number of representations
of certain quadratic forms in 8 variables
22. M. Roy, Level of Siegel modular forms constructed via $\textrm{sym}^3$
lifting
23. F. Stromberg, Dimension formulas and kernel functions for Hilbert modular
forms
24. H. Then, An explicit evaluation of the Hauptmoduli at elliptic points for
certain arithmetic groups
25. A. Trbovic, Torsion groups of elliptic curves over quadratic fields
26. S. Wagh, Maass space for lifting from SL(2,$\mathbb{R}$) to GL(2,B) over a
division quaternion algebra
27. N. Walji, On the occurrence of large positive Hecke eigenvalues for GL(2)
28. L. H. Walling, Representations by quadratic forms and the Eichler
Commutation Relation
29. S. Yamana, Degenerate principal series and Langlands classification.
eigenvalue system
2. A. Arnold-Roksandich, A discussion on the number eta-quotients of prime
level
3. C. Burrin, Dedekind sums, reciprocity, and non-arithmetic groups
4. G. Chinta, I. Horozov, and C. O'Sullivan, Noncommutative modular symbols
and Eisenstein series
5. A. Espinosa, An annotated discussion of a panel presentation on improving
diversity in mathematics
6. J. S. Friedman, J. Jorgenson, and L. Smajlovic, Superzeta functions,
regularized products, and the Selberg zeta function on hyperbolic manifolds
with cusps
7. X. Guitart and M. Masdeu, Computing $p$-adic periods of abelian varieties
from automorphic forms
8. A. Haensch and B. Kane, An algebraic and analytic approach to spinor
exceptional behavior in translated lattices
9. A. K. Jha and B. Sahu, Differential operators on Jacobi forms and special
values of certain Dirichlet series
10. J. Jorgenson and L. Smajlovic, Some results in study of Kronecker limit
formula and Dedekind sums
11. D. Kelmer, Equidistribution of shears and their arithmetic applications
12. K. Khuri-Makdisi, Fake proofs for identities involving products of
Eisenstein series
13. K. Khuri-Makdisi, Modular forms constructed from moduli of elliptic curves,
with applications to explicit models of modular curves
14. B. Kumar, J. Meher, and S. Pujahari, Some remarks on the coefficients of
symmetric power $L$-functions
15. J. Li, On primes in arithmetic progressions
16. B. Linowitz and L. Thompson, The Fourier coefficients of Eisenstein series
newforms
17. K. Maurischat, Properties of Sturm's formula
18. A. Odzak and L. Sceta, An application of a special form of a Tauberian
theorem
19. A. Odzak and L. Sceta, On the zeros of some $L$ functions from the extended
Selberg class
20. E. Ozman, Rational points on twisted modular curves
21. B. Ramakrishnan, B. Sahu, and A. K. Singh, On the number of representations
of certain quadratic forms in 8 variables
22. M. Roy, Level of Siegel modular forms constructed via $\textrm{sym}^3$
lifting
23. F. Stromberg, Dimension formulas and kernel functions for Hilbert modular
forms
24. H. Then, An explicit evaluation of the Hauptmoduli at elliptic points for
certain arithmetic groups
25. A. Trbovic, Torsion groups of elliptic curves over quadratic fields
26. S. Wagh, Maass space for lifting from SL(2,$\mathbb{R}$) to GL(2,B) over a
division quaternion algebra
27. N. Walji, On the occurrence of large positive Hecke eigenvalues for GL(2)
28. L. H. Walling, Representations by quadratic forms and the Eichler
Commutation Relation
29. S. Yamana, Degenerate principal series and Langlands classification.