159,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
80 °P sammeln
  • Gebundenes Buch

Biofilms and Implantable Medical Devices: Infection and Control explores the increasing use of permanent and semi-permanent implants and indwelling medical devices. As an understanding of the growth and impact of biofilm formation on these medical devices and biomaterials is vital for protecting the health of the human host, this book provides readers with a comprehensive treatise on biofilms and their relationship with medical devices, also reporting on infections and associated strategies for prevention.

Produktbeschreibung
Biofilms and Implantable Medical Devices: Infection and Control explores the increasing use of permanent and semi-permanent implants and indwelling medical devices. As an understanding of the growth and impact of biofilm formation on these medical devices and biomaterials is vital for protecting the health of the human host, this book provides readers with a comprehensive treatise on biofilms and their relationship with medical devices, also reporting on infections and associated strategies for prevention.
Autorenporträt
Dr. Ying Deng is an Associate Professor in the Department of Biomedical Engineering at the University of South Dakota (USD). Dr. Deng has authored or co-authored various articles in leading journals, exploring biomaterial applications, especially tissue engineering, and approaches to control biomaterial-related biofilm formation. She has co-authored a book chapter, patents, and has made dozens of presentations at national and international conferences. She has received research funding for multifunctional (biocompatible and antimicrobial) biomaterial development from the South Dakota Board of Regents (SDBOR), the United States Department of Defense, and the National Institutes of Health. In addition, she is currently serving as the Chair of the Sioux Valley Local Section of the American Chemical Society. Her research interests include the development of biocompatible and antimicrobial materials, tissue engineering, drug delivery systems, and surface modification and characterizati

on of biomedical implants and devices.