76,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
38 °P sammeln
  • Broschiertes Buch

Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling.
In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies - neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II…mehr

Produktbeschreibung
Predicting the future for financial gain is a difficult, sometimes profitable activity. The focus of this book is the application of biologically inspired algorithms (BIAs) to financial modelling.

In a detailed introduction, the authors explain computer trading on financial markets and the difficulties faced in financial market modelling. Then Part I provides a thorough guide to the various bioinspired methodologies - neural networks, evolutionary computing (particularly genetic algorithms and grammatical evolution), particle swarm and ant colony optimization, and immune systems. Part II brings the reader through the development of market trading systems. Finally, Part III examines real-world case studies where BIA methodologies are employed to construct trading systems in equity and foreign exchange markets, and for the prediction of corporate bond ratings and corporate failures.

The book was written for those in the finance community who want to apply BIAs in financial modelling, and for computer scientists who want an introduction to this growing application domain.
Autorenporträt
Prof. Anthony Brabazon is currently Dean of the UCD College of Business. Previous positions held in UCD include Associate Dean and Director of the Smurfit Graduate School of Business, Vice-Principal of Research and Innovation for the College of Business and Law, and Head of Research for the School of Business. His primary research interests concern the development of natural computing theory and the application of related algorithms to real-world problems, particularly in the domain of business and finance, and he has pioneered multidisciplinary collaborations with industry in areas such as financial mathematics, financial economics, and computer science. He is cofounder and codirector of the Natural Computing Research and Applications Group at UCD, among the most successful research groups dedicated to this subject. Among his publications are the successful coauthored books 'Natural Computing Algorithms', 'Foundations in Grammatical Evolution for DynamicEnvironments', and 'Biologically Inspired Algorithms for Financial Modelling'. Dr. Seán McGarraghy is the director of the UCD Centre for Business Analytics, he was formerly director of the UCD Smurfit Graduate School of Business MSc in Business Analytics. He has qualifications in electronics, mathematics and management and his teaching and academic publications cover many aspects of business analytics and operations research. Particular topics of interests include combinatorial enumeration and optimization, network algorithms, supply chain management, quadratic forms and K-theory. Among his publications are the successful coauthored book 'Natural Computing Algorithms'.
Rezensionen
From the reviews: "Anthony Brabazon and Michael O'Neill ... have just published an interesting book that introduces a wide range of biologically inspired algorithms and their applications in financial modelling. ... This book is a well-written, easy to read, brief introduction to the state-of-the-art biologically inspired algorithms." (Mak Kaboudan, Genetic Programming and Evolvable Machines, Vol. 7, 2006) "The objective of this book is to provide an introduction to biologically inspired algorithms and some tightly scoped practical examples in finance. ... provides some new insights and alternative tools for the financial modelling toolbox. ... The goal and objective of the book is to provide practical examples using these evolutionary algorithms and it does that decently ... . Overall I found the book very enlightening ... and it has provided ideas and alternative ways to think about solutions." (Brad G. Kyer, SIGACT News, Vol. 40 (4), 2009)