Charles C. Pinter
Book of Abstract Algebra
Charles C. Pinter
Book of Abstract Algebra
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Accessible but rigorous, this outstanding text encompasses all of elementary abstract algebra's standard topics. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. 1990 edition.
Andere Kunden interessierten sich auch für
- Benjamin Fine (Fairfield University Professor of Mathematics)Introduction to Abstract Algebra94,99 €
- Frank AyresSchaum's Outline of Modern Abstract Algebra23,99 €
- Thomas JudsonAbstract Algebra17,99 €
- Joseph GallianContemporary Abstract Algebra118,99 €
- Shaun V. Ault (Valdosta State University Assistant Professor)Understanding Topology100,99 €
- Kenier CastilloA First Course on Orthogonal Polynomials97,99 €
- Milo BeckmanMath Without Numbers24,99 €
-
-
-
Accessible but rigorous, this outstanding text encompasses all of elementary abstract algebra's standard topics. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. 1990 edition.
Produktdetails
- Produktdetails
- Dover Books on Mathema 1.4tics
- Verlag: Dover Publications Inc.
- Seitenzahl: 400
- Erscheinungstermin: 26. März 2010
- Englisch
- Abmessung: 216mm x 141mm x 22mm
- Gewicht: 470g
- ISBN-13: 9780486474175
- ISBN-10: 0486474178
- Artikelnr.: 26465722
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Dover Books on Mathema 1.4tics
- Verlag: Dover Publications Inc.
- Seitenzahl: 400
- Erscheinungstermin: 26. März 2010
- Englisch
- Abmessung: 216mm x 141mm x 22mm
- Gewicht: 470g
- ISBN-13: 9780486474175
- ISBN-10: 0486474178
- Artikelnr.: 26465722
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Charles C. Pinter is Professor Emeritus of Mathematics at Bucknell University.
Chapter 1 Why Abstract Algebra Chapter 2 Operations Chapter 3 The
Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5
Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8
Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of
Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and
Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism
Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem
Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals
and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains
Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23
Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials
Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials
Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees
of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory:
Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33
Solving Equations by Radicals Appendix A Review of Set Theory Appendix B
Review of the Integers Appendix C Review of Mathematical Integers Answers
to Selected Exercises Index
Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5
Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8
Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of
Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and
Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism
Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem
Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals
and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains
Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23
Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials
Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials
Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees
of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory:
Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33
Solving Equations by Radicals Appendix A Review of Set Theory Appendix B
Review of the Integers Appendix C Review of Mathematical Integers Answers
to Selected Exercises Index
Chapter 1 Why Abstract Algebra Chapter 2 Operations Chapter 3 The
Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5
Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8
Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of
Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and
Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism
Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem
Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals
and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains
Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23
Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials
Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials
Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees
of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory:
Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33
Solving Equations by Radicals Appendix A Review of Set Theory Appendix B
Review of the Integers Appendix C Review of Mathematical Integers Answers
to Selected Exercises Index
Definition of Groups Chapter 4 Elementary Properties of Groups Chapter 5
Subgroups Chapter 6 Functions Chapter 7 Groups of Permutations Chapter 8
Permutations of a Finite Set Chapter 9 Isomorphism Chapter 10 Order of
Group Elements Chapter 11 Cyclic Groups Chapter 12 Partitions and
Equivalence Relations Chapter 13 Counting Cosets Chapter 14 Homomorphism
Chapter 15 Quotient Groups Chapter 16 The Fundamental Homomorphism Theorem
Chapter 17 Rings: Definitions and Elementary Properties Chapter 18 Ideals
and Homomorphism Chapter 19 Quotient Rings Chapter 20 Integral Domains
Chapter 21 The Integers Chapter 22 Factoring into Primes Chapter 23
Elements of Number Theiory (Optional) Chapter 24 Rings of Polynomials
Chapter 25 Factoring Polynomials Chapter 26 Substitution in Polynomials
Chapter 27 Extensions of Fields Chapter 28 Vector Spaces Chapter 29 Degrees
of Field Extensions Chapter 30 Ruler and Compass Chapter 31 Galois Theory:
Preamble Chapter 32 Galois Theory: The Heart of the Matter Chapter 33
Solving Equations by Radicals Appendix A Review of Set Theory Appendix B
Review of the Integers Appendix C Review of Mathematical Integers Answers
to Selected Exercises Index