Michael Spivak
Calculus
Michael Spivak
Calculus
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Spivak's aim is to present calculus, i.e. analysis, as the first real encounter with mathematics: how it is a rigorous theory rather than just tools and techniques learned by rote. Since students traditionally find the subject hard to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus is ideal for honours students and mathematics majors seeking an alternative to doorstop textbooks and the more formidable introductions to real analysis.…mehr
Andere Kunden interessierten sich auch für
Serge LangLinear Algebra37,99 €
Kenneth A. RossElementary Analysis34,99 €
Daniel J. VellemanHow to Prove It: A Structured Approach41,99 €
Wen-mei W. Hwu (MulticoreWare CTO and professor specializing in coProgramming Massively Parallel Processors89,99 €
Burkhard DischKalkulation und Rechnungsgrundlagen in der Lebensversicherung. Erste Ausgabe: Stand 200242,95 €
Joseph O'RourkeThe Mathematics of Origami129,99 €
Helmut KochEinführung in die Mathematik54,99 €-
-
-
-
-
-
-
Spivak's aim is to present calculus, i.e. analysis, as the first real encounter with mathematics: how it is a rigorous theory rather than just tools and techniques learned by rote. Since students traditionally find the subject hard to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus is ideal for honours students and mathematics majors seeking an alternative to doorstop textbooks and the more formidable introductions to real analysis.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 3., überarb. Aufl.
- Seitenzahl: 684
- Erscheinungstermin: 8. Juni 2006
- Englisch
- Abmessung: 286mm x 221mm x 41mm
- Gewicht: 2151g
- ISBN-13: 9780521867443
- ISBN-10: 0521867444
- Artikelnr.: 20911150
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- 3., überarb. Aufl.
- Seitenzahl: 684
- Erscheinungstermin: 8. Juni 2006
- Englisch
- Abmessung: 286mm x 221mm x 41mm
- Gewicht: 2151g
- ISBN-13: 9780521867443
- ISBN-10: 0521867444
- Artikelnr.: 20911150
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Preface; Part I. Prologue: 1. Basic properties of mumbers; 2. Numbers of various sorts; Part II. Foundations: 3. Functions; 4. Graphs; 5. Limits; 6. Continuous functions; 7. Three hard theorems; 8. Least upper bounds; Part III. Derivatives and Integrals: 9. Derivatives; 10. Differentiation; 11. Significance of the derivative; 12. Inverse functions; 13. Integrals; 14. The fundamental theorem of calculus; 15. The trigonometric functions; 16. Pi is irrational; 17. Planetary motion; 18. The logarithm and exponential functions; 19. Integration in elementary terms; Part IV. Infinite Sequences and Infinite Series: 20. Approximation by polynomial functions; 21. e is transcendental; 22. Infinite sequences; 23. Infinite series; 24. Uniform convergence and power series; 25. Complex numbers; 26. Complex functions; 27. Complex power series; Part V. Epilogue: 28. Fields; 29. Construction of the real numbers; 30. Uniqueness of the real numbers; Suggested reading; Answers (to selected problems); Glossary of symbols; Index.Preface; Part I. Prologue: 1. Basic properties of mumbers; 2. Numbers of various sorts; Part II. Foundations: 3. Functions; 4. Graphs; 5. Limits; 6. Continuous functions; 7. Three hard theorems; 8. Least upper bounds; Part III. Derivatives and Integrals: 9. Derivatives; 10. Differentiation; 11. Significance of the derivative; 12. Inverse functions; 13. Integrals; 14. The fundamental theorem of calculus; 15. The trigonometric functions; 16. Pi is irrational; 17. Planetary motion; 18. The logarithm and exponential functions; 19. Integration in elementary terms; Part IV. Infinite Sequences and Infinite Series: 20. Approximation by polynomial functions; 21. e is transcendental; 22. Infinite sequences; 23. Infinite series; 24. Uniform convergence and power series; 25. Complex numbers; 26. Complex functions; 27. Complex power series; Part V. Epilogue: 28. Fields; 29. Construction of the real numbers; 30. Uniqueness of the real numbers; Suggested reading; Answers (to selected problems); Glossary of symbols; Index.
Preface; Part I. Prologue: 1. Basic properties of mumbers; 2. Numbers of various sorts; Part II. Foundations: 3. Functions; 4. Graphs; 5. Limits; 6. Continuous functions; 7. Three hard theorems; 8. Least upper bounds; Part III. Derivatives and Integrals: 9. Derivatives; 10. Differentiation; 11. Significance of the derivative; 12. Inverse functions; 13. Integrals; 14. The fundamental theorem of calculus; 15. The trigonometric functions; 16. Pi is irrational; 17. Planetary motion; 18. The logarithm and exponential functions; 19. Integration in elementary terms; Part IV. Infinite Sequences and Infinite Series: 20. Approximation by polynomial functions; 21. e is transcendental; 22. Infinite sequences; 23. Infinite series; 24. Uniform convergence and power series; 25. Complex numbers; 26. Complex functions; 27. Complex power series; Part V. Epilogue: 28. Fields; 29. Construction of the real numbers; 30. Uniqueness of the real numbers; Suggested reading; Answers (to selected problems); Glossary of symbols; Index.Preface; Part I. Prologue: 1. Basic properties of mumbers; 2. Numbers of various sorts; Part II. Foundations: 3. Functions; 4. Graphs; 5. Limits; 6. Continuous functions; 7. Three hard theorems; 8. Least upper bounds; Part III. Derivatives and Integrals: 9. Derivatives; 10. Differentiation; 11. Significance of the derivative; 12. Inverse functions; 13. Integrals; 14. The fundamental theorem of calculus; 15. The trigonometric functions; 16. Pi is irrational; 17. Planetary motion; 18. The logarithm and exponential functions; 19. Integration in elementary terms; Part IV. Infinite Sequences and Infinite Series: 20. Approximation by polynomial functions; 21. e is transcendental; 22. Infinite sequences; 23. Infinite series; 24. Uniform convergence and power series; 25. Complex numbers; 26. Complex functions; 27. Complex power series; Part V. Epilogue: 28. Fields; 29. Construction of the real numbers; 30. Uniqueness of the real numbers; Suggested reading; Answers (to selected problems); Glossary of symbols; Index.







