32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
16 °P sammeln
  • Broschiertes Buch

As a model for interactions present in the active site of orotidine-5 -monophosphate decarboxylase (ODCase), we investigated the effects of substrate destabilization by a nearby negative charge and stabilization of the carbanion intermediate, due to hydrogen bonds to the carbonyl groups (O-2 and O-4) of orotic acid and its decarboxylation product, using ab initio calculations. Results from these models were comparable with available data, suggesting that the magnitude of the decarboxylation rate enhancement depends on a combination of the charge distance and hydrogen bonding effects. We found…mehr

Produktbeschreibung
As a model for interactions present in the active site of orotidine-5 -monophosphate decarboxylase (ODCase), we investigated the effects of substrate destabilization by a nearby negative charge and stabilization of the carbanion intermediate, due to hydrogen bonds to the carbonyl groups (O-2 and O-4) of orotic acid and its decarboxylation product, using ab initio calculations. Results from these models were comparable with available data, suggesting that the magnitude of the decarboxylation rate enhancement depends on a combination of the charge distance and hydrogen bonding effects. We found that the dipole moment of the proton donor may also play a significant role, implying that the key to the rest of the catalysis lie within the specific interactions of the substrate and the surrounding residues.
Autorenporträt
Diana L. Shem poluchila stepen' bakalawra biohimii i magistra nauk. Kandidat himicheskih nauk w Gosudarstwennom uniwersitete San-Francisko. Ona takzhe poluchila stepen' magistra w oblasti obrazowaniq dlq prepodawaniq himii w Stänfordskom uniwersitete w Palo-Al'to, Kaliforniq. Sredi drugih ee knig - uchebnoe posobie 'Mathematica Tutorial for Physical Chemistry', dostupnoe besplatno w Internete.