123,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
62 °P sammeln
  • Gebundenes Buch

Characterization of Nanomaterials in Complex Environmental and Biological Media covers the novel properties of nanomaterials and their applications to consumer products and industrial processes.
The book fills the growing gap in this challenging area, bringing together disparate strands in chemistry, physics, biology, and other relevant disciplines. It provides an overview on nanotechnology, nanomaterials, nano(eco)toxicology, and nanomaterial characterization, focusing on the characterization of a range of nanomaterial physicochemical properties of relevance to environmental and…mehr

Produktbeschreibung
Characterization of Nanomaterials in Complex Environmental and Biological Media covers the novel properties of nanomaterials and their applications to consumer products and industrial processes.

The book fills the growing gap in this challenging area, bringing together disparate strands in chemistry, physics, biology, and other relevant disciplines. It provides an overview on nanotechnology, nanomaterials, nano(eco)toxicology, and nanomaterial characterization, focusing on the characterization of a range of nanomaterial physicochemical properties of relevance to environmental and toxicological studies and their available analytical techniques.

Readers will find a multidisciplinary approach that provides highly skilled scientists, engineers, and technicians with the tools they need to understand and interpret complicated sets of data obtained through sophisticated analytical techniques.
Autorenporträt
Mohammed Baalousha received a BSc in Civil Engineering from the Islamic University of Gaza, Palestine in 2001. After that, he moved to France where he completed a MSc degree in Applied Mechanics in 2002 and a PhD in Environmental Biogeochemistry in 2006 from the University of Bordeaux, France investigating environmental role of colloids as carriers of trace elements. He subsequently undertook a postdoctoral research role at the University of Birmingham, UK, where he began to examine the environmental fate and behavior of nanomaterials and to develop methodologies for nanomaterial characterization in environmental and biological media. In 2014, he was appointed Assistant Professor of Environmental Nanoscience at the University of South Carolina, USA. His major current research interests are: (i) understanding the role of nanoparticles as carriers of trace contaminants in the natural environment, (ii) understanding the fate, behavior and biological effects of manufactured nanomateri

als in the environment, and (iii) development and optimization of methodologies for nanomaterial characterization in complex media.