Sarvesh Kumar, Manish K. Kashyap
Charged Particle Beam Physics
An Introduction for Physicists and Engineers
Sarvesh Kumar, Manish K. Kashyap
Charged Particle Beam Physics
An Introduction for Physicists and Engineers
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This scientifically up-to-date book lays the foundation for modeling, designing and implementing accelerator device components, using modern approaches such as the transfer-matrix method and numerical simulation using beam optics codes.
Andere Kunden interessierten sich auch für
Fouad G. MajorCharged Particle Traps226,99 €
Mark ThomsonModern Particle Physics56,93 €
Fouad G. MajorCharged Particle Traps226,99 €
Arno StraessnerElectroweak Physics at LEP and LHC98,99 €
Saverio D'AuriaIntroduction to Nuclear and Particle Physics42,99 €
Lorenzo BianchiniSelected Exercises in Particle and Nuclear Physics57,99 €
Frank HartmannEvolution of Silicon Sensor Technology in Particle Physics130,99 €-
-
-
This scientifically up-to-date book lays the foundation for modeling, designing and implementing accelerator device components, using modern approaches such as the transfer-matrix method and numerical simulation using beam optics codes.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1141404 000
- 1. Auflage
- Seitenzahl: 288
- Erscheinungstermin: 14. Mai 2025
- Englisch
- Abmessung: 247mm x 175mm x 19mm
- Gewicht: 666g
- ISBN-13: 9783527414048
- ISBN-10: 3527414045
- Artikelnr.: 72288880
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley-vch@kolibri360.de
- Verlag: Wiley-VCH
- Artikelnr. des Verlages: 1141404 000
- 1. Auflage
- Seitenzahl: 288
- Erscheinungstermin: 14. Mai 2025
- Englisch
- Abmessung: 247mm x 175mm x 19mm
- Gewicht: 666g
- ISBN-13: 9783527414048
- ISBN-10: 3527414045
- Artikelnr.: 72288880
- Herstellerkennzeichnung
- Wiley-VCH GmbH
- Boschstraße 12
- 69469 Weinheim
- wiley-vch@kolibri360.de
Dr. Sarvesh Kumar is an experimental plasma and accelerator physicist with nearly two decades of experience at the IUAC, New Delhi, India. He contributed to significant national and international projects such as the Large Hadron Collider project. He is presently working as Associate Professor in the Department of Physics & Astrophysics, University of Delhi, India. His main area of interests are plasma wakefield acceleration, plasma instabilities, particle accelerator designs, beam optics and beam-plasma interaction. Dr. Manish K. Kashyap is a Professor at the School of Physical Sciences, Jawaharlal Nehru University (JNU), India. His areas of interest are condensed matter physics, plasma physics and accelerator physics. His work integrates theoretical modeling with experimental perspectives to enhance beam quality and stability in ion accelerators. He has published around 110 research papers in international journals and conference proceedings.
1 BASIC PRINCIPLES OF PARTICLE ACCELERATORS
1.1 History of Accelerators
1.2 Units in Accelerator Physics
1.3 Common Components of Accelerators
1.4 Electrostatic Accelerators
1.5 Motion of a Charged Particle in a Magnetic Field
1.6 Cyclotron
1.7 Synchroton
1.8 Betatron
1.9 Colliders
1.10 Synchrocyclotrons
1.11 Storage Rings
1.12 FFAG Accelerators
1.13 Wakefield Accelerators
2 BEAM OPTICS
2.1 Phase Space
2.2 Liouville's Theorem
2.3 Emittance and Brightness
2.4 Transfer Matrix
2.5 Transverse Beam Dynamics
2.6 Longitudinal Beam Dynamics
3 ION SOURCES
3.1 Plasma Physics
3.2 Negative Ion Source
3.3 ECR Ion Source
3.3 Microwave Ion Source
3.5 Laser Ion Source
3.6 Vacuum Arc Ion Source
3.7 High Current Gaseous Ion Source
4 MAGNETOSTATIC DEVICES
4.2 Solenoid Magnets
4.4 Dipole Magnets
4.4 Quadrupole Magnet
4.5 Sextupole Magnets
4.6 Scanner Magnets
4.7 Steerer Magnets
4.8 Wien Filter
4.9 Achromatic magnets
4.10 Undulators and Wigglers
5 ELECTROSTATIC DEVICES
5.1 Motion of a Charged Particle in an Electric Field
5.2 Electrostatic Gap Lens
5.3 Einzel Lens
5.4 Electrostatic Dipole
5.5 Electrostatic Quadrupole
5.6 Electrostatic Accelerating Tubes
6 RADIO FREQUENCY DEVICES
6.1 Motion of a Charged Particle in a Radio frequency field
6.2 RF Gap
6.3 RF Buncher
6.4 RF Chopper
6.4 Multiharmonic Buncher
6.5 RF Accelerating Cavities
6.6 Radiofrequency Quadrupoles
6.7 Drift Tube Linacs
7 BEAM DIAGNOSTIC DEVICES
7.1 Faraday Cups
7.2 Beam Profile Monitors
7.3 Transverse Emittance Scanner
7.4 Longitudinal Emittance Scanner
8 APPLICATIONS OF ACCELERATORS
8.1 Nuclear Physics
8.2 Materials Sciences
8.3 Atomic Physics
8.4 Plasma Physics
8.5 Radiation Biology
8.6 Accelerator Mass Spectroscopy
8.7 High Energy Elementary Particle Physics Appendices
Solutions to Chapter Problems
1.1 History of Accelerators
1.2 Units in Accelerator Physics
1.3 Common Components of Accelerators
1.4 Electrostatic Accelerators
1.5 Motion of a Charged Particle in a Magnetic Field
1.6 Cyclotron
1.7 Synchroton
1.8 Betatron
1.9 Colliders
1.10 Synchrocyclotrons
1.11 Storage Rings
1.12 FFAG Accelerators
1.13 Wakefield Accelerators
2 BEAM OPTICS
2.1 Phase Space
2.2 Liouville's Theorem
2.3 Emittance and Brightness
2.4 Transfer Matrix
2.5 Transverse Beam Dynamics
2.6 Longitudinal Beam Dynamics
3 ION SOURCES
3.1 Plasma Physics
3.2 Negative Ion Source
3.3 ECR Ion Source
3.3 Microwave Ion Source
3.5 Laser Ion Source
3.6 Vacuum Arc Ion Source
3.7 High Current Gaseous Ion Source
4 MAGNETOSTATIC DEVICES
4.2 Solenoid Magnets
4.4 Dipole Magnets
4.4 Quadrupole Magnet
4.5 Sextupole Magnets
4.6 Scanner Magnets
4.7 Steerer Magnets
4.8 Wien Filter
4.9 Achromatic magnets
4.10 Undulators and Wigglers
5 ELECTROSTATIC DEVICES
5.1 Motion of a Charged Particle in an Electric Field
5.2 Electrostatic Gap Lens
5.3 Einzel Lens
5.4 Electrostatic Dipole
5.5 Electrostatic Quadrupole
5.6 Electrostatic Accelerating Tubes
6 RADIO FREQUENCY DEVICES
6.1 Motion of a Charged Particle in a Radio frequency field
6.2 RF Gap
6.3 RF Buncher
6.4 RF Chopper
6.4 Multiharmonic Buncher
6.5 RF Accelerating Cavities
6.6 Radiofrequency Quadrupoles
6.7 Drift Tube Linacs
7 BEAM DIAGNOSTIC DEVICES
7.1 Faraday Cups
7.2 Beam Profile Monitors
7.3 Transverse Emittance Scanner
7.4 Longitudinal Emittance Scanner
8 APPLICATIONS OF ACCELERATORS
8.1 Nuclear Physics
8.2 Materials Sciences
8.3 Atomic Physics
8.4 Plasma Physics
8.5 Radiation Biology
8.6 Accelerator Mass Spectroscopy
8.7 High Energy Elementary Particle Physics Appendices
Solutions to Chapter Problems
1 BASIC PRINCIPLES OF PARTICLE ACCELERATORS
1.1 History of Accelerators
1.2 Units in Accelerator Physics
1.3 Common Components of Accelerators
1.4 Electrostatic Accelerators
1.5 Motion of a Charged Particle in a Magnetic Field
1.6 Cyclotron
1.7 Synchroton
1.8 Betatron
1.9 Colliders
1.10 Synchrocyclotrons
1.11 Storage Rings
1.12 FFAG Accelerators
1.13 Wakefield Accelerators
2 BEAM OPTICS
2.1 Phase Space
2.2 Liouville's Theorem
2.3 Emittance and Brightness
2.4 Transfer Matrix
2.5 Transverse Beam Dynamics
2.6 Longitudinal Beam Dynamics
3 ION SOURCES
3.1 Plasma Physics
3.2 Negative Ion Source
3.3 ECR Ion Source
3.3 Microwave Ion Source
3.5 Laser Ion Source
3.6 Vacuum Arc Ion Source
3.7 High Current Gaseous Ion Source
4 MAGNETOSTATIC DEVICES
4.2 Solenoid Magnets
4.4 Dipole Magnets
4.4 Quadrupole Magnet
4.5 Sextupole Magnets
4.6 Scanner Magnets
4.7 Steerer Magnets
4.8 Wien Filter
4.9 Achromatic magnets
4.10 Undulators and Wigglers
5 ELECTROSTATIC DEVICES
5.1 Motion of a Charged Particle in an Electric Field
5.2 Electrostatic Gap Lens
5.3 Einzel Lens
5.4 Electrostatic Dipole
5.5 Electrostatic Quadrupole
5.6 Electrostatic Accelerating Tubes
6 RADIO FREQUENCY DEVICES
6.1 Motion of a Charged Particle in a Radio frequency field
6.2 RF Gap
6.3 RF Buncher
6.4 RF Chopper
6.4 Multiharmonic Buncher
6.5 RF Accelerating Cavities
6.6 Radiofrequency Quadrupoles
6.7 Drift Tube Linacs
7 BEAM DIAGNOSTIC DEVICES
7.1 Faraday Cups
7.2 Beam Profile Monitors
7.3 Transverse Emittance Scanner
7.4 Longitudinal Emittance Scanner
8 APPLICATIONS OF ACCELERATORS
8.1 Nuclear Physics
8.2 Materials Sciences
8.3 Atomic Physics
8.4 Plasma Physics
8.5 Radiation Biology
8.6 Accelerator Mass Spectroscopy
8.7 High Energy Elementary Particle Physics Appendices
Solutions to Chapter Problems
1.1 History of Accelerators
1.2 Units in Accelerator Physics
1.3 Common Components of Accelerators
1.4 Electrostatic Accelerators
1.5 Motion of a Charged Particle in a Magnetic Field
1.6 Cyclotron
1.7 Synchroton
1.8 Betatron
1.9 Colliders
1.10 Synchrocyclotrons
1.11 Storage Rings
1.12 FFAG Accelerators
1.13 Wakefield Accelerators
2 BEAM OPTICS
2.1 Phase Space
2.2 Liouville's Theorem
2.3 Emittance and Brightness
2.4 Transfer Matrix
2.5 Transverse Beam Dynamics
2.6 Longitudinal Beam Dynamics
3 ION SOURCES
3.1 Plasma Physics
3.2 Negative Ion Source
3.3 ECR Ion Source
3.3 Microwave Ion Source
3.5 Laser Ion Source
3.6 Vacuum Arc Ion Source
3.7 High Current Gaseous Ion Source
4 MAGNETOSTATIC DEVICES
4.2 Solenoid Magnets
4.4 Dipole Magnets
4.4 Quadrupole Magnet
4.5 Sextupole Magnets
4.6 Scanner Magnets
4.7 Steerer Magnets
4.8 Wien Filter
4.9 Achromatic magnets
4.10 Undulators and Wigglers
5 ELECTROSTATIC DEVICES
5.1 Motion of a Charged Particle in an Electric Field
5.2 Electrostatic Gap Lens
5.3 Einzel Lens
5.4 Electrostatic Dipole
5.5 Electrostatic Quadrupole
5.6 Electrostatic Accelerating Tubes
6 RADIO FREQUENCY DEVICES
6.1 Motion of a Charged Particle in a Radio frequency field
6.2 RF Gap
6.3 RF Buncher
6.4 RF Chopper
6.4 Multiharmonic Buncher
6.5 RF Accelerating Cavities
6.6 Radiofrequency Quadrupoles
6.7 Drift Tube Linacs
7 BEAM DIAGNOSTIC DEVICES
7.1 Faraday Cups
7.2 Beam Profile Monitors
7.3 Transverse Emittance Scanner
7.4 Longitudinal Emittance Scanner
8 APPLICATIONS OF ACCELERATORS
8.1 Nuclear Physics
8.2 Materials Sciences
8.3 Atomic Physics
8.4 Plasma Physics
8.5 Radiation Biology
8.6 Accelerator Mass Spectroscopy
8.7 High Energy Elementary Particle Physics Appendices
Solutions to Chapter Problems







