Emmanuel Desurvire
	
		
	Classical and Quantum Information Theory
Emmanuel Desurvire
Classical and Quantum Information Theory
- Gebundenes Buch
 
- Merkliste
 - Auf die Merkliste
 - Bewerten Bewerten
 - Teilen
 - Produkt teilen
 - Produkterinnerung
 - Produkterinnerung
 
For the first time, this book sets out a complete overview of both classical and quantum information theory, covering key topics such as coding, compression, error-correction, cryptography, and channel capacity. Highly illustrated, with numerous practical examples and end-of-chapter exercises, this is ideal for graduate students, researchers and practitioners in industry.
Andere Kunden interessierten sich auch für
Michel TalagrandWhat Is a Quantum Field Theory?93,99 €
Wolfgang Bietenholz (Universidad Nacional Autonoma de Mexico)Uncovering Quantum Field Theory and the Standard Model70,99 €
Peter J. Olver (University of Minnesota)Classical Invariant Theory61,99 €
Ronald Kleiss (Radboud Universiteit Nijmegen)Quantum Field Theory88,99 €
Daniel I. Khomskii (The Netherlands Rijksuniversiteit Groningen)Basic Aspects of the Quantum Theory of Solids74,99 €
Francois Gelis (Commissariat a l'Energie Atomique (CEA) Saclay )Problems in Quantum Field Theory50,99 €
Esteban A. Calzetta (Argentina Universidad de Buenos Aires)Nonequilibrium Quantum Field Theory137,99 €- 				
 - 				
 - 				
 
					
					For the first time, this book sets out a complete overview of both classical and quantum information theory, covering key topics such as coding, compression, error-correction, cryptography, and channel capacity. Highly illustrated, with numerous practical examples and end-of-chapter exercises, this is ideal for graduate students, researchers and practitioners in industry.				
				Produktdetails
					- Produktdetails
 - Verlag: Cambridge University Press
 - Seitenzahl: 714
 - Erscheinungstermin: 19. Februar 2009
 - Englisch
 - Abmessung: 250mm x 175mm x 42mm
 - Gewicht: 1550g
 - ISBN-13: 9780521881715
 - ISBN-10: 0521881714
 - Artikelnr.: 26032851
 
- Herstellerkennzeichnung
 - Libri GmbH
 - Europaallee 1
 - 36244 Bad Hersfeld
 - gpsr@libri.de
 
- Verlag: Cambridge University Press
 - Seitenzahl: 714
 - Erscheinungstermin: 19. Februar 2009
 - Englisch
 - Abmessung: 250mm x 175mm x 42mm
 - Gewicht: 1550g
 - ISBN-13: 9780521881715
 - ISBN-10: 0521881714
 - Artikelnr.: 26032851
 
- Herstellerkennzeichnung
 - Libri GmbH
 - Europaallee 1
 - 36244 Bad Hersfeld
 - gpsr@libri.de
 
Ce roman d'anticipation peut être lu et apprécié sans aucune connaissance scientifique ou technique. Les encarts occasionnels détaillant certains calculs physiques (ainsi qu'un Appendice mathématique) intéresseront le lecteur de niveau ou formation Terminale scientifique..
	1. Probabilities basics
2. Probability distributions
3. Measuring information
4. Entropy
5. Mutual information and more entropies
6. Differential entropy
7. Algorithmic entropy and Kolmogorov complexity
8. Information coding
9. Optimal coding and compression
10. Integer, arithmetic and adaptive coding
11. Error correction
12. Channel entropy
13. Channel capacity and coding theorem
14. Gaussian channel and Shannon-Hartley theorem
15. Reversible computation
16. Quantum bits and quantum gates
17. Quantum measurments
18. Qubit measurements, superdense coding and quantum teleportation
19. Deutsch/Jozsa alorithms and quantum fourier transform
20. Shor's factorization algorithm
21. Quantum information theory
22. Quantum compression
23. Quantum channel noise and channel capacity
24. Quantum error correction
25. Classical and quantum cryptography
Appendix A. Boltzmann's entropy
Appendix B. Shannon's entropy
Appendix C. Maximum entropy of discrete sources
Appendix D. Markov chains and the second law of thermodynamics
Appendix E. From discrete to continuous entropy
Appendix F. Kraft-McMillan inequality
Appendix G. Overview of data compression standards
Appendix H. Arithmetic coding algorithm
Appendix I. Lempel-Ziv distinct parsing
Appendix J. Error-correction capability of linear block codes
Appendix K. Capacity of binary communication channels
Appendix L. Converse proof of the Channel Coding Theorem
Appendix M. Block sphere representation of the qubit
Appendix N. Pauli matrices, rotations and unitary operators
Appendix O. Heisenberg Uncertainty Principle
Appendix P. Two qubit teleportation
Appendix Q. Quantum Fourier transform circuit
Appendix R. Properties of continued fraction expansion
Appendix S. Computation of inverse Fourier transform in the factoring of N=21 through Shor's algorithm
Appendix T. Modular arithmetic and Euler's Theorem
Appendix U. Klein's inequality
Appendix V. Schmidt decomposition of joint pure states
Appendix W. State purification
Appendix X. Holevo bound
Appendix Y. Polynomial byte representation and modular multiplication.
	2. Probability distributions
3. Measuring information
4. Entropy
5. Mutual information and more entropies
6. Differential entropy
7. Algorithmic entropy and Kolmogorov complexity
8. Information coding
9. Optimal coding and compression
10. Integer, arithmetic and adaptive coding
11. Error correction
12. Channel entropy
13. Channel capacity and coding theorem
14. Gaussian channel and Shannon-Hartley theorem
15. Reversible computation
16. Quantum bits and quantum gates
17. Quantum measurments
18. Qubit measurements, superdense coding and quantum teleportation
19. Deutsch/Jozsa alorithms and quantum fourier transform
20. Shor's factorization algorithm
21. Quantum information theory
22. Quantum compression
23. Quantum channel noise and channel capacity
24. Quantum error correction
25. Classical and quantum cryptography
Appendix A. Boltzmann's entropy
Appendix B. Shannon's entropy
Appendix C. Maximum entropy of discrete sources
Appendix D. Markov chains and the second law of thermodynamics
Appendix E. From discrete to continuous entropy
Appendix F. Kraft-McMillan inequality
Appendix G. Overview of data compression standards
Appendix H. Arithmetic coding algorithm
Appendix I. Lempel-Ziv distinct parsing
Appendix J. Error-correction capability of linear block codes
Appendix K. Capacity of binary communication channels
Appendix L. Converse proof of the Channel Coding Theorem
Appendix M. Block sphere representation of the qubit
Appendix N. Pauli matrices, rotations and unitary operators
Appendix O. Heisenberg Uncertainty Principle
Appendix P. Two qubit teleportation
Appendix Q. Quantum Fourier transform circuit
Appendix R. Properties of continued fraction expansion
Appendix S. Computation of inverse Fourier transform in the factoring of N=21 through Shor's algorithm
Appendix T. Modular arithmetic and Euler's Theorem
Appendix U. Klein's inequality
Appendix V. Schmidt decomposition of joint pure states
Appendix W. State purification
Appendix X. Holevo bound
Appendix Y. Polynomial byte representation and modular multiplication.
1. Probabilities basics
2. Probability distributions
3. Measuring information
4. Entropy
5. Mutual information and more entropies
6. Differential entropy
7. Algorithmic entropy and Kolmogorov complexity
8. Information coding
9. Optimal coding and compression
10. Integer, arithmetic and adaptive coding
11. Error correction
12. Channel entropy
13. Channel capacity and coding theorem
14. Gaussian channel and Shannon-Hartley theorem
15. Reversible computation
16. Quantum bits and quantum gates
17. Quantum measurments
18. Qubit measurements, superdense coding and quantum teleportation
19. Deutsch/Jozsa alorithms and quantum fourier transform
20. Shor's factorization algorithm
21. Quantum information theory
22. Quantum compression
23. Quantum channel noise and channel capacity
24. Quantum error correction
25. Classical and quantum cryptography
Appendix A. Boltzmann's entropy
Appendix B. Shannon's entropy
Appendix C. Maximum entropy of discrete sources
Appendix D. Markov chains and the second law of thermodynamics
Appendix E. From discrete to continuous entropy
Appendix F. Kraft-McMillan inequality
Appendix G. Overview of data compression standards
Appendix H. Arithmetic coding algorithm
Appendix I. Lempel-Ziv distinct parsing
Appendix J. Error-correction capability of linear block codes
Appendix K. Capacity of binary communication channels
Appendix L. Converse proof of the Channel Coding Theorem
Appendix M. Block sphere representation of the qubit
Appendix N. Pauli matrices, rotations and unitary operators
Appendix O. Heisenberg Uncertainty Principle
Appendix P. Two qubit teleportation
Appendix Q. Quantum Fourier transform circuit
Appendix R. Properties of continued fraction expansion
Appendix S. Computation of inverse Fourier transform in the factoring of N=21 through Shor's algorithm
Appendix T. Modular arithmetic and Euler's Theorem
Appendix U. Klein's inequality
Appendix V. Schmidt decomposition of joint pure states
Appendix W. State purification
Appendix X. Holevo bound
Appendix Y. Polynomial byte representation and modular multiplication.
				2. Probability distributions
3. Measuring information
4. Entropy
5. Mutual information and more entropies
6. Differential entropy
7. Algorithmic entropy and Kolmogorov complexity
8. Information coding
9. Optimal coding and compression
10. Integer, arithmetic and adaptive coding
11. Error correction
12. Channel entropy
13. Channel capacity and coding theorem
14. Gaussian channel and Shannon-Hartley theorem
15. Reversible computation
16. Quantum bits and quantum gates
17. Quantum measurments
18. Qubit measurements, superdense coding and quantum teleportation
19. Deutsch/Jozsa alorithms and quantum fourier transform
20. Shor's factorization algorithm
21. Quantum information theory
22. Quantum compression
23. Quantum channel noise and channel capacity
24. Quantum error correction
25. Classical and quantum cryptography
Appendix A. Boltzmann's entropy
Appendix B. Shannon's entropy
Appendix C. Maximum entropy of discrete sources
Appendix D. Markov chains and the second law of thermodynamics
Appendix E. From discrete to continuous entropy
Appendix F. Kraft-McMillan inequality
Appendix G. Overview of data compression standards
Appendix H. Arithmetic coding algorithm
Appendix I. Lempel-Ziv distinct parsing
Appendix J. Error-correction capability of linear block codes
Appendix K. Capacity of binary communication channels
Appendix L. Converse proof of the Channel Coding Theorem
Appendix M. Block sphere representation of the qubit
Appendix N. Pauli matrices, rotations and unitary operators
Appendix O. Heisenberg Uncertainty Principle
Appendix P. Two qubit teleportation
Appendix Q. Quantum Fourier transform circuit
Appendix R. Properties of continued fraction expansion
Appendix S. Computation of inverse Fourier transform in the factoring of N=21 through Shor's algorithm
Appendix T. Modular arithmetic and Euler's Theorem
Appendix U. Klein's inequality
Appendix V. Schmidt decomposition of joint pure states
Appendix W. State purification
Appendix X. Holevo bound
Appendix Y. Polynomial byte representation and modular multiplication.







