Volker Dietrich / Klaus Habetha / Gerhard Jank (Hgg.)Aachen 1996
Clifford Algebras and Their Application in Mathematical Physics
Aachen 1996
Herausgegeben von Dietrich, Volker; Habetha, Klaus; Jank, Gerhard
Volker Dietrich / Klaus Habetha / Gerhard Jank (Hgg.)Aachen 1996
Clifford Algebras and Their Application in Mathematical Physics
Aachen 1996
Herausgegeben von Dietrich, Volker; Habetha, Klaus; Jank, Gerhard
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics. Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral…mehr
Andere Kunden interessierten sich auch für
- S. HuangReal and Complex Clifford Analysis125,99 €
- Clifford Algebras in Analysis and Related Topics368,99 €
- Marius MitreaClifford Wavelets, Singular Integrals, and Hardy Spaces21,99 €
- BrackxClifford Analysis and Its Applications83,99 €
- Trends in Complex Analysis, Differential Geometry and Mathematical Physics - Proceedings of the 6th International Workshop on Complex Structures and Vector Fields184,99 €
- C. Constanda / Z. Nashed / D. Rollins (eds.)Integral Methods in Science and Engineering60,00 €
- Topics in Clifford Analysis105,99 €
-
-
-
Clifford Algebras continues to be a fast-growing discipline, with ever-increasing applications in many scientific fields. This volume contains the lectures given at the Fourth Conference on Clifford Algebras and their Applications in Mathematical Physics, held at RWTH Aachen in May 1996. The papers represent an excellent survey of the newest developments around Clifford Analysis and its applications to theoretical physics.
Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Audience: This book should appeal to physicists and mathematicians working in areas involving functions of complex variables, associative rings and algebras, integral transforms, operational calculus, partial differential equations, and the mathematics of physics.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Fundamental Theories of Physics .94
- Verlag: Springer Netherlands / Springer, Berlin
- 1998.
- Seitenzahl: 484
- Erscheinungstermin: 31. März 1998
- Englisch
- Abmessung: 241mm x 160mm x 32mm
- Gewicht: 910g
- ISBN-13: 9780792350378
- ISBN-10: 0792350375
- Artikelnr.: 27279730
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Fundamental Theories of Physics .94
- Verlag: Springer Netherlands / Springer, Berlin
- 1998.
- Seitenzahl: 484
- Erscheinungstermin: 31. März 1998
- Englisch
- Abmessung: 241mm x 160mm x 32mm
- Gewicht: 910g
- ISBN-13: 9780792350378
- ISBN-10: 0792350375
- Artikelnr.: 27279730
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Dietrich Volker, geboren 1951 in Fleestedt, bei Hamburg. Kaufmännische Lehre, Arbeit als Speditionskaufmann, Pädagogikstudium, Lehrer an einer Gesamtschule, Herausgeber beim Institut für Bildung und Kultur, Remscheid, Journalist und Autor. 1990 Gründung des Dittrich Verlags.
Preface. Dirac Operators and Clifford Geometry - New Unifying Principles in Particle Physics; Th. Ackermann. On the Hayman Uniqueness Problem for Polyharmonic Functions; M.B. Balk, M.Ya. Mazalov. Left-Linear and Nonlinear Riemann Problems in Clifford Analysis; S. Bernstein. Spin Structures and Harmonic Spinors on Nonhyperelliptic Riemann Surfaces of Small Genera; J. Bures. Decomposition of Analytic Hyperbolically Harmonic Functions; P. Cerejeiras. Spin Gauge Theories: A Summary; J.S.R. Chisholm, R.S. Farwell. Manifolds with and Without Embeddings; J. Cnops. Dirac Equation in the Clifford Algebra of Space; C. Daviau. Dirac Theory from a Field Theoretic Point of View; B. Fauser. On Some Applications of the Biharmonic Equation; K. Gürlebeck. Spinor Particle Mechanics; D. Hestenes. Clifford Analysis and Elliptic Boundary Value Problems in Unbounded Domains; U. Kähler. Twistors and Clifford Algebras; J. Keller. How Many Essentially Different Function Theories Exist? V.V. Kisil. Variational Property of the Peano Kernel for Harmonicity Differences of Order p; W. Haussmann, O.I. Kounchev. Clifford Analysis on the Sphere; P. Van Lancker. Type-Changing Transformations of Pseudo-Euclidean Hurwitz Pairs, Clifford Analysis, and Particle Lifetimes; J. Lawrynowicz. Modified Quaternionic Analysis in R4; Th. Hempfling, H. Leutwiler. Geometric Algebra and Lobachevski Geometry; H. Li. Generalizing the (F,G)-Derivative in the Sense of Bers; H.R. Malonek. Formes quadratiques de Hardy-Weinberg et algèbres de Clifford; A. Micali. On Dirac Equations in Curved Space-Times; D. Miralles. Some Partial Differential Equations in Clifford Analysis; E. Obolashvili. Teaching Clifford Algebra as Physical Mathematics; J.M. Parra. Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle; W.M. Pezzaglia Jr. Subluminal and Superluminal Electromagnetic Waves and the Lepton Mass Spectrum; W.A. Rodrigues Jr., J. Vaz Jr. Higher Spin and the Spacetime Algebra; S. Somaroo. Curved Radon Transforms in Clifford Analysis; F. Sommen. On a Class of Non-Linear Boundary Value Problems; W. Sprössig. Pin Structures and the Dirac Operator on Real Projective Spaces and Quadrics; M. Cahen, et al. Construction of Monopoles and Instantons by Using Spinors and the Inversion Theorem; J. Vaz Jr. Determinants, Manifolds with Boundary and Dirac Operators; K.P. Wojciechowski, et al. New Dynamical Equations for Many Particle System on the Basis of Multicomplex Algebra; R. Yamaleev.
Preface. Dirac Operators and Clifford Geometry - New Unifying Principles in Particle Physics; Th. Ackermann. On the Hayman Uniqueness Problem for Polyharmonic Functions; M.B. Balk, M.Ya. Mazalov. Left-Linear and Nonlinear Riemann Problems in Clifford Analysis; S. Bernstein. Spin Structures and Harmonic Spinors on Nonhyperelliptic Riemann Surfaces of Small Genera; J. Bures. Decomposition of Analytic Hyperbolically Harmonic Functions; P. Cerejeiras. Spin Gauge Theories: A Summary; J.S.R. Chisholm, R.S. Farwell. Manifolds with and Without Embeddings; J. Cnops. Dirac Equation in the Clifford Algebra of Space; C. Daviau. Dirac Theory from a Field Theoretic Point of View; B. Fauser. On Some Applications of the Biharmonic Equation; K. Gürlebeck. Spinor Particle Mechanics; D. Hestenes. Clifford Analysis and Elliptic Boundary Value Problems in Unbounded Domains; U. Kähler. Twistors and Clifford Algebras; J. Keller. How Many Essentially Different Function Theories Exist? V.V. Kisil. Variational Property of the Peano Kernel for Harmonicity Differences of Order p; W. Haussmann, O.I. Kounchev. Clifford Analysis on the Sphere; P. Van Lancker. Type-Changing Transformations of Pseudo-Euclidean Hurwitz Pairs, Clifford Analysis, and Particle Lifetimes; J. Lawrynowicz. Modified Quaternionic Analysis in R4; Th. Hempfling, H. Leutwiler. Geometric Algebra and Lobachevski Geometry; H. Li. Generalizing the (F,G)-Derivative in the Sense of Bers; H.R. Malonek. Formes quadratiques de Hardy-Weinberg et algèbres de Clifford; A. Micali. On Dirac Equations in Curved Space-Times; D. Miralles. Some Partial Differential Equations in Clifford Analysis; E. Obolashvili. Teaching Clifford Algebra as Physical Mathematics; J.M. Parra. Polydimensional Relativity, a Classical Generalization of the Automorphism Invariance Principle; W.M. Pezzaglia Jr. Subluminal and Superluminal Electromagnetic Waves and the Lepton Mass Spectrum; W.A. Rodrigues Jr., J. Vaz Jr. Higher Spin and the Spacetime Algebra; S. Somaroo. Curved Radon Transforms in Clifford Analysis; F. Sommen. On a Class of Non-Linear Boundary Value Problems; W. Sprössig. Pin Structures and the Dirac Operator on Real Projective Spaces and Quadrics; M. Cahen, et al. Construction of Monopoles and Instantons by Using Spinors and the Inversion Theorem; J. Vaz Jr. Determinants, Manifolds with Boundary and Dirac Operators; K.P. Wojciechowski, et al. New Dynamical Equations for Many Particle System on the Basis of Multicomplex Algebra; R. Yamaleev.