- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Prepare for the CompTIA Data+ exam, as well as a new career in data science, with this effective study guide In the newly revised second edition of CompTIA Data+ Study Guide: Exam DA0-002, veteran IT professionals Mike Chapple and Sharif Nijim provide a powerful, one-stop resource for anyone planning to pursue the CompTIA Data+ certification and go on to an exciting new career in data science. The authors walk you through the info you need to succeed on the exam and in your first day at a data science-focused job. Complete with two online practice tests, this book comprehensively covers every…mehr
Andere Kunden interessierten sich auch für
- Shirley ClarkeA Little Guide for Teachers10,99 €
- Bobbie JohnsPearson REVISE Key Stage 3 Maths (Foundation) Study Guide for preparing for GCSEs in 2025, 2026: GCSE Preparation10,49 €
- Javier Muñoz BernalStudy Habits27,99 €
- Fintan O'ReganA Little Guide for Teachers10,99 €
- Akbar ValadbigiOn the Study of the Role of Capable Teachers24,99 €
- Reinaldo GregoldoEnvironmental education in the countryside: a case study of a rural school33,99 €
- María José Chávez RamírezDiversification of strategies to motivate the study of Geography27,99 €
-
-
-
Prepare for the CompTIA Data+ exam, as well as a new career in data science, with this effective study guide In the newly revised second edition of CompTIA Data+ Study Guide: Exam DA0-002, veteran IT professionals Mike Chapple and Sharif Nijim provide a powerful, one-stop resource for anyone planning to pursue the CompTIA Data+ certification and go on to an exciting new career in data science. The authors walk you through the info you need to succeed on the exam and in your first day at a data science-focused job. Complete with two online practice tests, this book comprehensively covers every objective tested by the updated DA0-002 exam, including databases and data acquisition, data quality, data analysis and statistics, data visualization, and data governance. You'll also find: * Efficient and comprehensive content, helping you get up-to-speed as quickly as possible * Bite-size chapters that break down essential topics into manageable and accessible lessons * Complimentary access to Sybex' famous online learning environment, with practice questions, a complete glossary of common industry terminology, hundreds of flashcards, and more A practical and hands-on pathway to the CompTIA Data+ certification, as well as a new career in data science, the CompTIA Data+ Study Guide, Second Edition, offers the foundational knowledge, skills, and abilities you need to get started in an exciting and rewarding new career.
Produktdetails
- Produktdetails
- Verlag: Wiley
- 2nd edition
- Seitenzahl: 416
- Erscheinungstermin: 4. November 2025
- Englisch
- ISBN-13: 9781394320912
- ISBN-10: 1394320914
- Artikelnr.: 75620594
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Wiley
- 2nd edition
- Seitenzahl: 416
- Erscheinungstermin: 4. November 2025
- Englisch
- ISBN-13: 9781394320912
- ISBN-10: 1394320914
- Artikelnr.: 75620594
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
ABOUT THE AUTHORS Mike Chapple, PhD, is Teaching Professor of IT, Analytics, and Operations at the University of Notre Dame. He's a technology professional and educator with over 20 years of experience. Mike provides certification resources at his website, CertMike.com. Sharif Nijim is an Associate Teaching Professor of IT, Analytics, and Operations at Notre Dame's Mendoza College of Business, where he also serves as the Academic Co-Director of the Master of Science in Business Analytics program.
Contents
Introduction xvii
Data 2
Storage 3
Computing Power 5
Careers in Analytics 5
The Analytics Process 6
Data Acquisition 7
Cleaning and Manipulation 7
Analysis 7
Visualization 8
Reporting and Communication 9
Analytics Techniques 10
Descriptive Analytics 10
Inferential Analytics 10
Predictive Analytics 10
Prescriptive Analytics 11
Machine Learning, Arti_ cial Intelligence, and Deep Learning 11
Generative AI 12
Robotic Process Automation 13
Data Governance 13
Analytics Tools 14
Summary 16
Chapter 2 Data Analytics Tools 17
Spreadsheets 18
Microsoft Excel 19
Programming Languages 21
R 21
Python 23
Scala 24
SAS 24
Databases and SQL 26
Business Intelligence Software 29
Power BI 29
Tableau 29
Looker 31
Cloud Infrastructure 32
Drivers for Cloud Computing 32
Cloud Service Concepts 33
Cloud Deployment Models 35
Public Cloud Providers 36
Summary 37
Exam Essentials 37
Review Questions 39
Chapter 3 Understanding Data 43
Exploring Data Types 44
Structured Data Types 46
Unstructured Data Types 58
Categories of Data 63
Common Data Structures 66
Structured Data 66
Unstructured Data 68
Semi-structured Data 69
Common File Formats 70
Text Files 70
JavaScript Object Notation 72
Extensible Markup Language (XML) 74
Hypertext Markup Language (HTML) 75
Summary 76
Exam Essentials 77
Review Questions 78
Chapter 4 Databases and Data Acquisition 83
Exploring Databases 84
The Relational Model 85
Relational Databases 88
Nonrelational Databases 94
Database Use Cases 97
Online Transactional Processing 97
Online Analytical Processing 100
Schema Concepts 101
Data Acquisition Concepts 107
Integration 107
Data Sources and Collection Methods 109
Working with Data 120
Data Manipulation 121
Query Optimization 136
Summary 139
Exam Essentials 140
Review Questions 141
Chapter 5 Data Quality 145
Data Inconsistencies 146
Data Duplication 146
Data Redundancy 147
Missing Values 151
Invalid Data 152
Nonparametric Data 153
Data Outliers 153
Speci_ cation Mismatch 154
Data Type Validation 155
Data Completeness 156
Data Transformation Techniques 156
String Manipulation 156
Conversion 158
Augmentation 160
Scaling 160
Grouping Techniques 162
Reduction 163
Aggregation 166
Transposition 167
Exploding 168
Standardization 168
Imputation 171
Parsing 172
Merging 174
Appending 175
Recoding Data 176
Derived Variables 177
Deletion 178
Data Blending 178
Managing Data Quality 180
Circumstances to Check for Quality 180
Automated Validation 182
Data Quality Dimensions 183
Data Quality Rules and Metrics 185
Methods to Validate Quality 188
Summary 190
Exam Essentials 191
Review Questions 192
Chapter 6 Data Analysis and Statistics 197
Communication Approaches 198
Audience 198
Mock-Up 201
Accessibility 201
Statistical Functions and Measures 204
Mathematical 205
Logical 223
Date 226
String 227
Troubleshooting 229
Issues 229
Tools and Methods 232
Analysis Techniques 234
Determine Type of Analysis 235
Types of Analysis 235
Exploratory Data Analysis 236
Summary 237
Exam Essentials 239
Review Questions 240
Chapter 7 Data Visualization with Reports and_Dashboards 245
Exploring Visualization Elements 246
Charts 246
Maps 252
Pivot Tables 255
Infographic 258
Waterfall 259
Word Cloud 263
Understanding Business Requirements 263
Understanding Design Elements 267
Cover Page 268
Executive Summary 269
Branding 269
Documentation Elements 277
Understanding Dashboard Development Methods 279
Consumer Types 279
Data Source Considerations 280
Data Type Considerations 281
Development Process 282
Operational Considerations 282
Delivery Considerations 283
Static and Dynamic Delivery 283
Frequency 284
Data Versioning Techniques 286
Tactical and Research 287
Report Validation Techniques 288
Issues 288
Techniques 289
Reviews 289
Source Validation 290
Data Structures 290
Monitoring Alerts 291
Summary 291
Exam Essentials 293
Review Questions 295
Chapter 8 Data Governance 299
Data Management Concepts 300
Integration 301
Documentation 302
Source of Truth 309
Data Versioning 313
Metadata 313
Data Governance Roles 313
Data Compliance Concepts 315
National Institute of Standards and Technology (NIST) 315
Retention 316
Jurisdictional Requirements 316
Replication 317
Storage 318
Data Ethics 318
Payment Card Industry (PCI) 319
Personal Identi_ able Information (PII) 320
Protected Health Information (PHI) 320
Audit 323
Classi_ cation 323
Incident Reporting 325
Data Privacy and Protection 325
Role-Based Access Control (RBAC) 326
Encryption 327
Masking 332
Anonymization 332
Data Usage 333
Data Sharing 334
Data Quality Assurance Practices 334
International Organization for Standardization (ISO) 335
Source Control 335
Unit Test 336
Requirement Testing 337
Stress Test 337
User Acceptance Testing (UAT) 338
Data Health Check 339
Automated Data Quality Monitoring 339
Data Pro_ ling 341
Summary 342
Exam Essentials 344
Review Questions 345
Index 349
Introduction xvii
Data 2
Storage 3
Computing Power 5
Careers in Analytics 5
The Analytics Process 6
Data Acquisition 7
Cleaning and Manipulation 7
Analysis 7
Visualization 8
Reporting and Communication 9
Analytics Techniques 10
Descriptive Analytics 10
Inferential Analytics 10
Predictive Analytics 10
Prescriptive Analytics 11
Machine Learning, Arti_ cial Intelligence, and Deep Learning 11
Generative AI 12
Robotic Process Automation 13
Data Governance 13
Analytics Tools 14
Summary 16
Chapter 2 Data Analytics Tools 17
Spreadsheets 18
Microsoft Excel 19
Programming Languages 21
R 21
Python 23
Scala 24
SAS 24
Databases and SQL 26
Business Intelligence Software 29
Power BI 29
Tableau 29
Looker 31
Cloud Infrastructure 32
Drivers for Cloud Computing 32
Cloud Service Concepts 33
Cloud Deployment Models 35
Public Cloud Providers 36
Summary 37
Exam Essentials 37
Review Questions 39
Chapter 3 Understanding Data 43
Exploring Data Types 44
Structured Data Types 46
Unstructured Data Types 58
Categories of Data 63
Common Data Structures 66
Structured Data 66
Unstructured Data 68
Semi-structured Data 69
Common File Formats 70
Text Files 70
JavaScript Object Notation 72
Extensible Markup Language (XML) 74
Hypertext Markup Language (HTML) 75
Summary 76
Exam Essentials 77
Review Questions 78
Chapter 4 Databases and Data Acquisition 83
Exploring Databases 84
The Relational Model 85
Relational Databases 88
Nonrelational Databases 94
Database Use Cases 97
Online Transactional Processing 97
Online Analytical Processing 100
Schema Concepts 101
Data Acquisition Concepts 107
Integration 107
Data Sources and Collection Methods 109
Working with Data 120
Data Manipulation 121
Query Optimization 136
Summary 139
Exam Essentials 140
Review Questions 141
Chapter 5 Data Quality 145
Data Inconsistencies 146
Data Duplication 146
Data Redundancy 147
Missing Values 151
Invalid Data 152
Nonparametric Data 153
Data Outliers 153
Speci_ cation Mismatch 154
Data Type Validation 155
Data Completeness 156
Data Transformation Techniques 156
String Manipulation 156
Conversion 158
Augmentation 160
Scaling 160
Grouping Techniques 162
Reduction 163
Aggregation 166
Transposition 167
Exploding 168
Standardization 168
Imputation 171
Parsing 172
Merging 174
Appending 175
Recoding Data 176
Derived Variables 177
Deletion 178
Data Blending 178
Managing Data Quality 180
Circumstances to Check for Quality 180
Automated Validation 182
Data Quality Dimensions 183
Data Quality Rules and Metrics 185
Methods to Validate Quality 188
Summary 190
Exam Essentials 191
Review Questions 192
Chapter 6 Data Analysis and Statistics 197
Communication Approaches 198
Audience 198
Mock-Up 201
Accessibility 201
Statistical Functions and Measures 204
Mathematical 205
Logical 223
Date 226
String 227
Troubleshooting 229
Issues 229
Tools and Methods 232
Analysis Techniques 234
Determine Type of Analysis 235
Types of Analysis 235
Exploratory Data Analysis 236
Summary 237
Exam Essentials 239
Review Questions 240
Chapter 7 Data Visualization with Reports and_Dashboards 245
Exploring Visualization Elements 246
Charts 246
Maps 252
Pivot Tables 255
Infographic 258
Waterfall 259
Word Cloud 263
Understanding Business Requirements 263
Understanding Design Elements 267
Cover Page 268
Executive Summary 269
Branding 269
Documentation Elements 277
Understanding Dashboard Development Methods 279
Consumer Types 279
Data Source Considerations 280
Data Type Considerations 281
Development Process 282
Operational Considerations 282
Delivery Considerations 283
Static and Dynamic Delivery 283
Frequency 284
Data Versioning Techniques 286
Tactical and Research 287
Report Validation Techniques 288
Issues 288
Techniques 289
Reviews 289
Source Validation 290
Data Structures 290
Monitoring Alerts 291
Summary 291
Exam Essentials 293
Review Questions 295
Chapter 8 Data Governance 299
Data Management Concepts 300
Integration 301
Documentation 302
Source of Truth 309
Data Versioning 313
Metadata 313
Data Governance Roles 313
Data Compliance Concepts 315
National Institute of Standards and Technology (NIST) 315
Retention 316
Jurisdictional Requirements 316
Replication 317
Storage 318
Data Ethics 318
Payment Card Industry (PCI) 319
Personal Identi_ able Information (PII) 320
Protected Health Information (PHI) 320
Audit 323
Classi_ cation 323
Incident Reporting 325
Data Privacy and Protection 325
Role-Based Access Control (RBAC) 326
Encryption 327
Masking 332
Anonymization 332
Data Usage 333
Data Sharing 334
Data Quality Assurance Practices 334
International Organization for Standardization (ISO) 335
Source Control 335
Unit Test 336
Requirement Testing 337
Stress Test 337
User Acceptance Testing (UAT) 338
Data Health Check 339
Automated Data Quality Monitoring 339
Data Pro_ ling 341
Summary 342
Exam Essentials 344
Review Questions 345
Index 349
Contents
Introduction xvii
Data 2
Storage 3
Computing Power 5
Careers in Analytics 5
The Analytics Process 6
Data Acquisition 7
Cleaning and Manipulation 7
Analysis 7
Visualization 8
Reporting and Communication 9
Analytics Techniques 10
Descriptive Analytics 10
Inferential Analytics 10
Predictive Analytics 10
Prescriptive Analytics 11
Machine Learning, Arti_ cial Intelligence, and Deep Learning 11
Generative AI 12
Robotic Process Automation 13
Data Governance 13
Analytics Tools 14
Summary 16
Chapter 2 Data Analytics Tools 17
Spreadsheets 18
Microsoft Excel 19
Programming Languages 21
R 21
Python 23
Scala 24
SAS 24
Databases and SQL 26
Business Intelligence Software 29
Power BI 29
Tableau 29
Looker 31
Cloud Infrastructure 32
Drivers for Cloud Computing 32
Cloud Service Concepts 33
Cloud Deployment Models 35
Public Cloud Providers 36
Summary 37
Exam Essentials 37
Review Questions 39
Chapter 3 Understanding Data 43
Exploring Data Types 44
Structured Data Types 46
Unstructured Data Types 58
Categories of Data 63
Common Data Structures 66
Structured Data 66
Unstructured Data 68
Semi-structured Data 69
Common File Formats 70
Text Files 70
JavaScript Object Notation 72
Extensible Markup Language (XML) 74
Hypertext Markup Language (HTML) 75
Summary 76
Exam Essentials 77
Review Questions 78
Chapter 4 Databases and Data Acquisition 83
Exploring Databases 84
The Relational Model 85
Relational Databases 88
Nonrelational Databases 94
Database Use Cases 97
Online Transactional Processing 97
Online Analytical Processing 100
Schema Concepts 101
Data Acquisition Concepts 107
Integration 107
Data Sources and Collection Methods 109
Working with Data 120
Data Manipulation 121
Query Optimization 136
Summary 139
Exam Essentials 140
Review Questions 141
Chapter 5 Data Quality 145
Data Inconsistencies 146
Data Duplication 146
Data Redundancy 147
Missing Values 151
Invalid Data 152
Nonparametric Data 153
Data Outliers 153
Speci_ cation Mismatch 154
Data Type Validation 155
Data Completeness 156
Data Transformation Techniques 156
String Manipulation 156
Conversion 158
Augmentation 160
Scaling 160
Grouping Techniques 162
Reduction 163
Aggregation 166
Transposition 167
Exploding 168
Standardization 168
Imputation 171
Parsing 172
Merging 174
Appending 175
Recoding Data 176
Derived Variables 177
Deletion 178
Data Blending 178
Managing Data Quality 180
Circumstances to Check for Quality 180
Automated Validation 182
Data Quality Dimensions 183
Data Quality Rules and Metrics 185
Methods to Validate Quality 188
Summary 190
Exam Essentials 191
Review Questions 192
Chapter 6 Data Analysis and Statistics 197
Communication Approaches 198
Audience 198
Mock-Up 201
Accessibility 201
Statistical Functions and Measures 204
Mathematical 205
Logical 223
Date 226
String 227
Troubleshooting 229
Issues 229
Tools and Methods 232
Analysis Techniques 234
Determine Type of Analysis 235
Types of Analysis 235
Exploratory Data Analysis 236
Summary 237
Exam Essentials 239
Review Questions 240
Chapter 7 Data Visualization with Reports and_Dashboards 245
Exploring Visualization Elements 246
Charts 246
Maps 252
Pivot Tables 255
Infographic 258
Waterfall 259
Word Cloud 263
Understanding Business Requirements 263
Understanding Design Elements 267
Cover Page 268
Executive Summary 269
Branding 269
Documentation Elements 277
Understanding Dashboard Development Methods 279
Consumer Types 279
Data Source Considerations 280
Data Type Considerations 281
Development Process 282
Operational Considerations 282
Delivery Considerations 283
Static and Dynamic Delivery 283
Frequency 284
Data Versioning Techniques 286
Tactical and Research 287
Report Validation Techniques 288
Issues 288
Techniques 289
Reviews 289
Source Validation 290
Data Structures 290
Monitoring Alerts 291
Summary 291
Exam Essentials 293
Review Questions 295
Chapter 8 Data Governance 299
Data Management Concepts 300
Integration 301
Documentation 302
Source of Truth 309
Data Versioning 313
Metadata 313
Data Governance Roles 313
Data Compliance Concepts 315
National Institute of Standards and Technology (NIST) 315
Retention 316
Jurisdictional Requirements 316
Replication 317
Storage 318
Data Ethics 318
Payment Card Industry (PCI) 319
Personal Identi_ able Information (PII) 320
Protected Health Information (PHI) 320
Audit 323
Classi_ cation 323
Incident Reporting 325
Data Privacy and Protection 325
Role-Based Access Control (RBAC) 326
Encryption 327
Masking 332
Anonymization 332
Data Usage 333
Data Sharing 334
Data Quality Assurance Practices 334
International Organization for Standardization (ISO) 335
Source Control 335
Unit Test 336
Requirement Testing 337
Stress Test 337
User Acceptance Testing (UAT) 338
Data Health Check 339
Automated Data Quality Monitoring 339
Data Pro_ ling 341
Summary 342
Exam Essentials 344
Review Questions 345
Index 349
Introduction xvii
Data 2
Storage 3
Computing Power 5
Careers in Analytics 5
The Analytics Process 6
Data Acquisition 7
Cleaning and Manipulation 7
Analysis 7
Visualization 8
Reporting and Communication 9
Analytics Techniques 10
Descriptive Analytics 10
Inferential Analytics 10
Predictive Analytics 10
Prescriptive Analytics 11
Machine Learning, Arti_ cial Intelligence, and Deep Learning 11
Generative AI 12
Robotic Process Automation 13
Data Governance 13
Analytics Tools 14
Summary 16
Chapter 2 Data Analytics Tools 17
Spreadsheets 18
Microsoft Excel 19
Programming Languages 21
R 21
Python 23
Scala 24
SAS 24
Databases and SQL 26
Business Intelligence Software 29
Power BI 29
Tableau 29
Looker 31
Cloud Infrastructure 32
Drivers for Cloud Computing 32
Cloud Service Concepts 33
Cloud Deployment Models 35
Public Cloud Providers 36
Summary 37
Exam Essentials 37
Review Questions 39
Chapter 3 Understanding Data 43
Exploring Data Types 44
Structured Data Types 46
Unstructured Data Types 58
Categories of Data 63
Common Data Structures 66
Structured Data 66
Unstructured Data 68
Semi-structured Data 69
Common File Formats 70
Text Files 70
JavaScript Object Notation 72
Extensible Markup Language (XML) 74
Hypertext Markup Language (HTML) 75
Summary 76
Exam Essentials 77
Review Questions 78
Chapter 4 Databases and Data Acquisition 83
Exploring Databases 84
The Relational Model 85
Relational Databases 88
Nonrelational Databases 94
Database Use Cases 97
Online Transactional Processing 97
Online Analytical Processing 100
Schema Concepts 101
Data Acquisition Concepts 107
Integration 107
Data Sources and Collection Methods 109
Working with Data 120
Data Manipulation 121
Query Optimization 136
Summary 139
Exam Essentials 140
Review Questions 141
Chapter 5 Data Quality 145
Data Inconsistencies 146
Data Duplication 146
Data Redundancy 147
Missing Values 151
Invalid Data 152
Nonparametric Data 153
Data Outliers 153
Speci_ cation Mismatch 154
Data Type Validation 155
Data Completeness 156
Data Transformation Techniques 156
String Manipulation 156
Conversion 158
Augmentation 160
Scaling 160
Grouping Techniques 162
Reduction 163
Aggregation 166
Transposition 167
Exploding 168
Standardization 168
Imputation 171
Parsing 172
Merging 174
Appending 175
Recoding Data 176
Derived Variables 177
Deletion 178
Data Blending 178
Managing Data Quality 180
Circumstances to Check for Quality 180
Automated Validation 182
Data Quality Dimensions 183
Data Quality Rules and Metrics 185
Methods to Validate Quality 188
Summary 190
Exam Essentials 191
Review Questions 192
Chapter 6 Data Analysis and Statistics 197
Communication Approaches 198
Audience 198
Mock-Up 201
Accessibility 201
Statistical Functions and Measures 204
Mathematical 205
Logical 223
Date 226
String 227
Troubleshooting 229
Issues 229
Tools and Methods 232
Analysis Techniques 234
Determine Type of Analysis 235
Types of Analysis 235
Exploratory Data Analysis 236
Summary 237
Exam Essentials 239
Review Questions 240
Chapter 7 Data Visualization with Reports and_Dashboards 245
Exploring Visualization Elements 246
Charts 246
Maps 252
Pivot Tables 255
Infographic 258
Waterfall 259
Word Cloud 263
Understanding Business Requirements 263
Understanding Design Elements 267
Cover Page 268
Executive Summary 269
Branding 269
Documentation Elements 277
Understanding Dashboard Development Methods 279
Consumer Types 279
Data Source Considerations 280
Data Type Considerations 281
Development Process 282
Operational Considerations 282
Delivery Considerations 283
Static and Dynamic Delivery 283
Frequency 284
Data Versioning Techniques 286
Tactical and Research 287
Report Validation Techniques 288
Issues 288
Techniques 289
Reviews 289
Source Validation 290
Data Structures 290
Monitoring Alerts 291
Summary 291
Exam Essentials 293
Review Questions 295
Chapter 8 Data Governance 299
Data Management Concepts 300
Integration 301
Documentation 302
Source of Truth 309
Data Versioning 313
Metadata 313
Data Governance Roles 313
Data Compliance Concepts 315
National Institute of Standards and Technology (NIST) 315
Retention 316
Jurisdictional Requirements 316
Replication 317
Storage 318
Data Ethics 318
Payment Card Industry (PCI) 319
Personal Identi_ able Information (PII) 320
Protected Health Information (PHI) 320
Audit 323
Classi_ cation 323
Incident Reporting 325
Data Privacy and Protection 325
Role-Based Access Control (RBAC) 326
Encryption 327
Masking 332
Anonymization 332
Data Usage 333
Data Sharing 334
Data Quality Assurance Practices 334
International Organization for Standardization (ISO) 335
Source Control 335
Unit Test 336
Requirement Testing 337
Stress Test 337
User Acceptance Testing (UAT) 338
Data Health Check 339
Automated Data Quality Monitoring 339
Data Pro_ ling 341
Summary 342
Exam Essentials 344
Review Questions 345
Index 349