Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics. The series includes in-depth knowledge on the molecular biological aspects of organismal physiology, with this release including chapters on Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins, Scale-consistent approach to the derivation of coarse-grained force…mehr
Computational Approaches for Understanding Dynamical Systems: Protein Folding and Assembly, Volume 170 in the Progress in Molecular Biology and Translational Science series, provides the most topical, informative and exciting monographs available on a wide variety of research topics. The series includes in-depth knowledge on the molecular biological aspects of organismal physiology, with this release including chapters on Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins, Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers, Enhanced sampling and free energy methods, and much more.
Produktdetails
Produktdetails
Progress in Molecular Biology and Translational Science Volume 170
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Birgit Strodel studied chemistry at Heinrich Heine University Düsseldorf (Germany) and the University of North Carolina at Chapel Hill (USA) and received her PhD in Theoretical Chemistry from the University of Frankfurt/Main (Germany) in 2005. She then joined the group of Prof. David J. Wales at Cambridge University (UK) as a postdoctoral research associate. Since 2009 she heads the Computational Biochemistry Group at the Jülich Research Centre (Germany) and was appointed Professor at Heinrich Heine University Düsseldorf in 2011. Her research interests primarily involve the thermodynamics and kinetics of protein aggregation.
Inhaltsangabe
1. Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins Justin Lemkul 2. Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers Adam Liwo 3. Monte Carlo methods in protein folding and assembly Sandipan Mohanty 4. Enhanced sampling and free energy methods Qinghua Liao 5. Markov models of molecular simulations of protein folding, protein-protein interactions, and aggregation Nicolae-viorel Buchete 6. Molecular dynamics simulations with experimental restraints Kresten Lindorff-Larsen 7. Protein folding simulations Ivan Coluzza 8. Thermal stability of proteins Fabio Sterpone 9. Aggregation of short disease-related peptides Philippe Derreumaux 10. Dichotomy between universality and specificity of amyloid ?-protein oligomer formation: Molecular dynamics perspective Brigita Urbanc 11. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation Wei Han
1. Pairwise-Additive and Polarizable Atomistic Force Fields for Molecular Dynamics Simulations of Proteins Justin Lemkul 2. Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers Adam Liwo 3. Monte Carlo methods in protein folding and assembly Sandipan Mohanty 4. Enhanced sampling and free energy methods Qinghua Liao 5. Markov models of molecular simulations of protein folding, protein-protein interactions, and aggregation Nicolae-viorel Buchete 6. Molecular dynamics simulations with experimental restraints Kresten Lindorff-Larsen 7. Protein folding simulations Ivan Coluzza 8. Thermal stability of proteins Fabio Sterpone 9. Aggregation of short disease-related peptides Philippe Derreumaux 10. Dichotomy between universality and specificity of amyloid ?-protein oligomer formation: Molecular dynamics perspective Brigita Urbanc 11. Computational studies of protein aggregation mediated by amyloid: Fibril elongation and secondary nucleation Wei Han
Rezensionen
"This book is an excellent resource on computational approaches for understanding protein folding and assembly. Computational researchers, curious experimentalists, students, molecular biologists, and protein chemists will find it quite interesting. There are very few books available that go to such depths to explain computational approaches for understanding dynamical systems such as protein folding and assembly." --Doody
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826