160,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
80 °P sammeln
  • Broschiertes Buch

Computational Biomechanics of Human Joints delves into the intricate details of each joint, exploring anatomical, mechanical, pathological, and therapeutic aspects. The book offers a comprehensive understanding of joint biomechanics by dedicating each chapter to specific joints, detailing their anatomical structure, biomechanical mechanisms, associated diseases, and pathologies. It also covers treatments, surgical interventions, and imaging-based modeling alongside numerical simulation techniques using the finite element method. This approach provides readers with an innovative perspective on…mehr

Produktbeschreibung
Computational Biomechanics of Human Joints delves into the intricate details of each joint, exploring anatomical, mechanical, pathological, and therapeutic aspects. The book offers a comprehensive understanding of joint biomechanics by dedicating each chapter to specific joints, detailing their anatomical structure, biomechanical mechanisms, associated diseases, and pathologies. It also covers treatments, surgical interventions, and imaging-based modeling alongside numerical simulation techniques using the finite element method. This approach provides readers with an innovative perspective on the technological advancements in joint biomechanics. In addition to exploring joint-specific details, the book discusses the advantages and limitations of modern techniques. Finally, the book emphasizes the potential for these methods to improve clinical decision-making, optimize personalized treatments, and design medical devices. The integration of advanced modeling and simulation techniques enhances the understanding of the complex mechanisms of joints, contributing significantly to both academic research and practical clinical applications.
Autorenporträt
Abdelwahed Barkaoui is a Full Professor of Mechanical Engineering at the International University of Rabat, Morocco. He is currently the head of the Mechanical and Advanced Materials Division at the LERMA Laboratory and the coordinator of the Biomechanics and Mechanobiology Research Team (MeV). Additionally, he is responsible for the international accreditation at the College of Engineering and Architecture. His research primarily focuses on problems in biomechanics, mechanobiology, and biomedical engineering.