Computational Structural Mechanics: Static and Dynamic Behaviors provides a cutting-edge treatment of functionally graded materials and the computational methods and solutions of FG static and vibration problems of plates. Using the Rayleigh-Ritz method, static and dynamic problems related to behavior of FG rectangular, Levy, elliptic, skew and annular plates are discussed in detail. A thorough review of the latest research results, computational methods and applications of FG technology make this an essential resource for researchers in academia and industry.
Computational Structural Mechanics: Static and Dynamic Behaviors provides a cutting-edge treatment of functionally graded materials and the computational methods and solutions of FG static and vibration problems of plates. Using the Rayleigh-Ritz method, static and dynamic problems related to behavior of FG rectangular, Levy, elliptic, skew and annular plates are discussed in detail. A thorough review of the latest research results, computational methods and applications of FG technology make this an essential resource for researchers in academia and industry.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Autorenporträt
Dr. Snehashish Chakraverty is a Senior Professor in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, with over 30 years of teaching and research experience. A gold medalist from the University of Roorkee (now IIT Roorkee), he earned his Ph.D. from IIT Roorkee and completed post-doctoral work at the University of Southampton (UK) and Concordia University (Canada). He has also served as a visiting professor in Canada and South Africa. Dr. Chakraverty has authored/edited 38 books and published over 495 research papers. His research spans differential equations (ordinary, partial, fractional), numerical and computational methods, structural and fluid dynamics, uncertainty modeling, and soft computing techniques. He has guided 27 Ph.D. scholars, with 10 currently under his supervision.
He has led 16 funded research projects and hosted international researchers through prestigious fellowships. Recognized in the top 2% of scientists globally (Stanford-Elsevier list, 2020-2024), he has received numerous awards including the CSIR Young Scientist Award, BOYSCAST Fellowship, INSA Bilateral Exchange, and IOP Top Cited Paper Awards. He is Chief Editor of International Journal of Fuzzy Computation and Modelling and serves on several international editorial boards.
Karan Kumar Pradhan is the Assistant Professor (NPIU, TEQIP-III) in Department of Basic Science, Parala Maharaja Engineering College, Berhampur (Odisha). Formerly, he was the Senior Research Fellow, Department of Mathematics, National Institute of Technology, Rourkela, India and also the recipient of SERB National Post-Doctoral Fellowship. KK Pradhan's research interests are numerical modeling, vibration problems, and structural members.
Inhaltsangabe
1. Overview of functionally graded materials2. Rayleigh-Ritz Method3. DQ and GDQ Methods4. Finite Element Method5. Static analysis of FG beams6. Vibration of FG beams7. Static Analysis of FG Plates8. Vibration of thick rectangular Plates9. Vibration of FG skew plates10. Vibration of FG Annular plates11. Vibration of FG plates on elastic foundations
1. Overview of functionally graded materials2. Rayleigh-Ritz Method3. DQ and GDQ Methods4. Finite Element Method5. Static analysis of FG beams6. Vibration of FG beams7. Static Analysis of FG Plates8. Vibration of thick rectangular Plates9. Vibration of FG skew plates10. Vibration of FG Annular plates11. Vibration of FG plates on elastic foundations
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826