Abigail M. Folberg, Carey S. Ryan, Charles M. Judd, Gary H. McClelland, Josh Correll
Data Analysis
A Model Comparison Approach to Regression, ANOVA, and Beyond
Abigail M. Folberg, Carey S. Ryan, Charles M. Judd, Gary H. McClelland, Josh Correll
Data Analysis
A Model Comparison Approach to Regression, ANOVA, and Beyond
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This essential textbook provides an integrated treatment of data analysis for the social and behavioral sciences. It covers all the key statistical models in an integrated manner that relies on the comparison of models of data estimated under the rubric of the general linear model.
Andere Kunden interessierten sich auch für
- Debbie L Hahs-VaughnApplied Multivariate Statistical Concepts315,99 €
- Andy FieldDiscovering Statistics Using R301,99 €
- Tamás RudasLectures on Categorical Data Analysis50,99 €
- Jenine BeekhuyzenQualitative Data Analysis with NVivo (Fourth Edition)195,99 €
- Tamás RudasLectures on Categorical Data Analysis70,99 €
- Dimitri MortelmansDoing Qualitative Data Analysis with NVivo40,99 €
- Advanced Studies in Behaviormetrics and Data Science100,99 €
-
-
-
This essential textbook provides an integrated treatment of data analysis for the social and behavioral sciences. It covers all the key statistical models in an integrated manner that relies on the comparison of models of data estimated under the rubric of the general linear model.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis Ltd
- 4. Auflage
- Seitenzahl: 478
- Erscheinungstermin: 20. August 2025
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 453g
- ISBN-13: 9781032572093
- ISBN-10: 1032572094
- Artikelnr.: 73332271
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Taylor & Francis Ltd
- 4. Auflage
- Seitenzahl: 478
- Erscheinungstermin: 20. August 2025
- Englisch
- Abmessung: 254mm x 178mm
- Gewicht: 453g
- ISBN-13: 9781032572093
- ISBN-10: 1032572094
- Artikelnr.: 73332271
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Joshua Correll is a Professor of Psychology and Neuroscience in the College of Arts and Sciences at the University of Colorado at Boulder. His research examines face processing, particularly the effects of social categories on face recognition, stereotypes, and data analysis. Abigail (Abby) M. Folberg is an Assistant Professor of Psychology in the College of Arts and Sciences at the University of Nebraska at Omaha. Her research examines the impacts of stereotypes and prejudice on marginalized group members as well as how individuals and organizations can reduce prejudice and discrimination. Charles "Chick" M. Judd is Professor Emeritus of Distinction in the College of Arts and Sciences at the University of Colorado at Boulder. His research focuses on social cognition and attitudes, intergroup relations and stereotypes, judgment and decision making, and behavioral science research methods and data analysis. Gary H. McClelland is Professor Emeritus of Psychology at the University of Colorado at Boulder. A Faculty Fellow at the Institute of Cognitive Science, his research interests include judgment and decision making, psychological models of economic behavior, statistics & data analysis, and measurement and scaling. Carey S. Ryan is a Professor Emeritus in the Department of Psychology at the University of Nebraska at Omaha. Her research interests include stereotyping and prejudice, group processes, and program evaluation.
Section A: Statistical Machinery 1. Introduction to Data Analysis 2. Simple
Models: Definitions of Error and Parameter Estimates 3. Simple Models:
Models of Error and Sampling Distributions 4. Simple Models: Statistical
Inferences about Parameter Estimates 5. Statistical Power: Power, Effect
Sizes, and Confidence Intervals Section B: Increasingly Complex Models 6.
Simple Regression: Models with a Single Continuous Predictor 7. Multiple
Regression: Models with Multiple Continuous Predictors 8. Moderated and
Nonlinear Multiple Regression models 9. One-Way ANOVA: Models with a Single
Categorical Predictor 10. Factorial ANOVA: Models with Multiple Categorical
Predictors and Product Terms 11. ANCOVA: Models with Continuous and
Categorical Predictors Section C: Violations of Assumptions About Error 12.
Repeated-Measures ANOVA: Models with Nonindependent Errors 13.
Incorporating Continuous Predictors with Nonindependent Data: Towards Mixed
Models 14. Outliers and Ill-Mannered Error 15. Logistic Regression:
Dependent Categorical Variables
Models: Definitions of Error and Parameter Estimates 3. Simple Models:
Models of Error and Sampling Distributions 4. Simple Models: Statistical
Inferences about Parameter Estimates 5. Statistical Power: Power, Effect
Sizes, and Confidence Intervals Section B: Increasingly Complex Models 6.
Simple Regression: Models with a Single Continuous Predictor 7. Multiple
Regression: Models with Multiple Continuous Predictors 8. Moderated and
Nonlinear Multiple Regression models 9. One-Way ANOVA: Models with a Single
Categorical Predictor 10. Factorial ANOVA: Models with Multiple Categorical
Predictors and Product Terms 11. ANCOVA: Models with Continuous and
Categorical Predictors Section C: Violations of Assumptions About Error 12.
Repeated-Measures ANOVA: Models with Nonindependent Errors 13.
Incorporating Continuous Predictors with Nonindependent Data: Towards Mixed
Models 14. Outliers and Ill-Mannered Error 15. Logistic Regression:
Dependent Categorical Variables
Section A: Statistical Machinery 1. Introduction to Data Analysis 2. Simple
Models: Definitions of Error and Parameter Estimates 3. Simple Models:
Models of Error and Sampling Distributions 4. Simple Models: Statistical
Inferences about Parameter Estimates 5. Statistical Power: Power, Effect
Sizes, and Confidence Intervals Section B: Increasingly Complex Models 6.
Simple Regression: Models with a Single Continuous Predictor 7. Multiple
Regression: Models with Multiple Continuous Predictors 8. Moderated and
Nonlinear Multiple Regression models 9. One-Way ANOVA: Models with a Single
Categorical Predictor 10. Factorial ANOVA: Models with Multiple Categorical
Predictors and Product Terms 11. ANCOVA: Models with Continuous and
Categorical Predictors Section C: Violations of Assumptions About Error 12.
Repeated-Measures ANOVA: Models with Nonindependent Errors 13.
Incorporating Continuous Predictors with Nonindependent Data: Towards Mixed
Models 14. Outliers and Ill-Mannered Error 15. Logistic Regression:
Dependent Categorical Variables
Models: Definitions of Error and Parameter Estimates 3. Simple Models:
Models of Error and Sampling Distributions 4. Simple Models: Statistical
Inferences about Parameter Estimates 5. Statistical Power: Power, Effect
Sizes, and Confidence Intervals Section B: Increasingly Complex Models 6.
Simple Regression: Models with a Single Continuous Predictor 7. Multiple
Regression: Models with Multiple Continuous Predictors 8. Moderated and
Nonlinear Multiple Regression models 9. One-Way ANOVA: Models with a Single
Categorical Predictor 10. Factorial ANOVA: Models with Multiple Categorical
Predictors and Product Terms 11. ANCOVA: Models with Continuous and
Categorical Predictors Section C: Violations of Assumptions About Error 12.
Repeated-Measures ANOVA: Models with Nonindependent Errors 13.
Incorporating Continuous Predictors with Nonindependent Data: Towards Mixed
Models 14. Outliers and Ill-Mannered Error 15. Logistic Regression:
Dependent Categorical Variables