Data Science in Engineering, Volume 9
Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022
Herausgegeben:Madarshahian, Ramin; Hemez, Francois
Data Science in Engineering, Volume 9
Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022
Herausgegeben:Madarshahian, Ramin; Hemez, Francois
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:
Novel Data-driven Analysis MethodsDeep Learning Gaussian Process AnalysisReal-time Video-based AnalysisApplications to Nonlinear Dynamics and Damage DetectionHigh-rate Structural Monitoring and Prognostics…mehr
Andere Kunden interessierten sich auch für
Data Science in Engineering, Volume 9189,99 €
Data Science in Engineering, Volume 9189,99 €
Data Science in Engineering, Volume 9211,99 €
Dynamic Substructures, Volume 4189,99 €
Special Topics in Structural Dynamics & Experimental Techniques, Volume 5174,99 €
Dynamic Substructures, Volume 4189,99 €
Special Topics in Structural Dynamics & Experimental Techniques, Volume 5174,99 €-
-
-
Data Science in Engineering, Volume 9: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the nineth volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Data Science in Engineering, including papers on:
Novel Data-driven Analysis MethodsDeep Learning Gaussian Process AnalysisReal-time Video-based AnalysisApplications to Nonlinear Dynamics and Damage DetectionHigh-rate Structural Monitoring and Prognostics
Novel Data-driven Analysis MethodsDeep Learning Gaussian Process AnalysisReal-time Video-based AnalysisApplications to Nonlinear Dynamics and Damage DetectionHigh-rate Structural Monitoring and Prognostics
Produktdetails
- Produktdetails
- Conference Proceedings of the Society for Experimental Mechanics Series
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-04124-2
- 1st edition 2022
- Seitenzahl: 164
- Erscheinungstermin: 6. Juli 2023
- Englisch
- Abmessung: 279mm x 210mm x 10mm
- Gewicht: 417g
- ISBN-13: 9783031041242
- ISBN-10: 3031041240
- Artikelnr.: 68189411
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
- Conference Proceedings of the Society for Experimental Mechanics Series
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-04124-2
- 1st edition 2022
- Seitenzahl: 164
- Erscheinungstermin: 6. Juli 2023
- Englisch
- Abmessung: 279mm x 210mm x 10mm
- Gewicht: 417g
- ISBN-13: 9783031041242
- ISBN-10: 3031041240
- Artikelnr.: 68189411
- Herstellerkennzeichnung
- Springer Nature c/o IBS
- Benzstrasse 21
- 48619 Heek
- Tanja.Keller@springer.com
Ramin Madarshahian, Company: Kount, an Equifax company, ID, USA; Francois Hemez, Lawrence Livermore National Laboratory, Livermore, CA, USA
Chapter 1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models.- Chapter 2. Deep Reinforcement Learning for Active Structure Stabilization.- Chapter 3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm.- Chapter 4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence.- Chapter 5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning.- Chapter 6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults.- Chapter 7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling.- Chapter 8. On Aspects of Geometry in SHM and Population-Based SHM.- Chapter 9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures.- Chapter 10. Data-Driven Parameter Identification for Turbomachinery Blisks.- Chapter 11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks.- Chapter 12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar.- Chapter 13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models.- Chapter 14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network.- Chapter 15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques.- Chapter 16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks.- Chapter 17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.
Chapter 1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models.- Chapter 2. Deep Reinforcement Learning for Active Structure Stabilization.- Chapter 3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm.- Chapter 4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence.- Chapter 5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning.- Chapter 6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults.- Chapter 7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling.- Chapter 8. On Aspects of Geometry in SHM and Population-Based SHM.- Chapter 9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures.- Chapter 10. Data-Driven Parameter Identification for Turbomachinery Blisks.- Chapter 11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks.- Chapter 12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar.- Chapter 13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models.- Chapter 14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network.- Chapter 15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques.- Chapter 16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks.- Chapter 17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.







