Deep Learning for Biomedical Image Reconstruction
Herausgeber: Ye, Jong Chul; Unser, Michael; Eldar, Yonina C
Deep Learning for Biomedical Image Reconstruction
Herausgeber: Ye, Jong Chul; Unser, Michael; Eldar, Yonina C
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Andere Kunden interessierten sich auch für
Intelligent Computing Techniques in Biomedical Imaging156,99 €
Advances in Deep Learning for Medical Image Analysis139,99 €
Bioelectromagnetics in Healthcare131,99 €
Artificial Intelligence and Cloud Computing Applications in Biomedical Engineering80,99 €
Govind P. Agrawal (New York University of Rochester)Physics and Engineering of Graded-Index Media63,99 €
Image Principles, Neck, and the Brain367,99 €
Ali H. Sayed (Ecole Polytechnique Federale de Lausanne)Inference and Learning from Data: Volume 1122,99 €-
-
-
Discover the power of deep neural networks for image reconstruction with this state-of-the-art review of modern theories and applications. Including interdisciplinary examples and a step-by-step background of deep learning, this book provides insight into the future of biomedical image reconstruction with clinical studies and mathematical theory.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 400
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- Abmessung: 246mm x 170mm x 24mm
- Gewicht: 856g
- ISBN-13: 9781316517512
- ISBN-10: 1316517519
- Artikelnr.: 68031499
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 400
- Erscheinungstermin: 14. Dezember 2023
- Englisch
- Abmessung: 246mm x 170mm x 24mm
- Gewicht: 856g
- ISBN-13: 9781316517512
- ISBN-10: 1316517519
- Artikelnr.: 68031499
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Part I. Theory of Deep Learning for Image Reconstruction Michael Unser: 1.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.
Formalizing deep neural networks Jong Chul Ye and Sangmin Lee; 2. Geometry
of deep learning Saiprasad Ravishankar, Zhishen Huang, Michael McCann and
Siqi Ye; 3. Model-based reconstruction with learning: from unsupervised to
supervised and beyond Yuelong Li, Or Bar-Shira, Vishal Monga and Yonina C.
Eldar; 4. Deep algorithm unrolling for biomedical; Part II. Deep Learning
Architecture for Various Imaging Modalities Haimiao Zhang, Bin Dong, Ge
Wang and Baodong Liu: 5. Deep learning for CT image reconstruction
Guang-Hong Chen, Chengzhu Zhang, Yinsheng Li, Yoseob Han and Jong Chul Ye;
6. Deep learning in CT reconstruction: bring the measured data to tasks
Patricia Johnson and Florian Knoll; 7. Overview deep learning
reconstruction of accelerated MRI Mathews Jacob, Hemant K. Aggarwal and
Qing Zou; 8. Model-based deep learning algorithms for inverse problems
Mehmet Akcakaya, Gyutaek Oh, Jong Chul Ye; 9. k-space deep learning for MR
reconstruction and artifact removal Ruud J. G. van Sloun, Jong Chul Ye and
Yonina C Eldar; 10. Deep learning for ultrasound beamforming Jaeyoung Huh,
Shujaat Khan and Jong Chul Ye; 11. Ultrasound image artifact removal using
deep neural network; Part III. Generative Models for Biomedical Imaging
Jaejun Yoo, Michael Unser: 12. Deep generative models for biomedical image
reconstruction Tolga C¿ukur, Mahmut Yurt, Salman Ul Hassan Dar, Hyungjin
Chun and, Jong Chul Ye; 13. Image synthesis in multi-contrast MRI with
generative adversarial networks Jaejun Yoo and Michael Unser; 14.
Regularizing deep-neural-network paradigm for the reconstruction of dynamic
magnetic resonance images Thanh-an Pham, Fangshu Yang and Michael Unser;
15. Regularizing neural network for phase unwrapping Michael T. McCann,
Laur`ene Donati, Harshit Gupta and Michael Unser; 16. CryoGAN: a deep
generative adversarial approach to single-particle cryo-em; Index.







