L. C. G. Rogers, D. Williams, David Williams
Diffusions, Markov Processes and Martingales
Volume 2, Ito Calculus
L. C. G. Rogers, D. Williams, David Williams
Diffusions, Markov Processes and Martingales
Volume 2, Ito Calculus
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Now available in paperback for the first time; essential reading for all students of probability theory.
Andere Kunden interessierten sich auch für
Karl GustafsonReverberations of a Stroke23,99 €
Karl GustafsonReverberations of a Stroke23,99 €
Isaac ChavelIsoperimetric Inequalities129,99 €
Jun KigamiAnalysis on Fractals132,99 €
Cemal CingiQuick Guide to Good Clinical Practice76,99 €
Bruno CordaniThe Kepler Problem76,99 €
Lars Linsen / Hans Hagen / Bernd Hamann (eds.)Visualization in Medicine and Life Sciences113,99 €-
-
-
Now available in paperback for the first time; essential reading for all students of probability theory.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- 2nd edition
- Seitenzahl: 496
- Erscheinungstermin: 18. Juni 2014
- Englisch
- Abmessung: 229mm x 152mm x 27mm
- Gewicht: 711g
- ISBN-13: 9780521775939
- ISBN-10: 0521775930
- Artikelnr.: 21545011
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- 2nd edition
- Seitenzahl: 496
- Erscheinungstermin: 18. Juni 2014
- Englisch
- Abmessung: 229mm x 152mm x 27mm
- Gewicht: 711g
- ISBN-13: 9780521775939
- ISBN-10: 0521775930
- Artikelnr.: 21545011
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Some frequently used notation
4. Introduction to Ito calculus
4.1. Some motivating remarks
4.2. Some fundamental ideas: previsible processes, localization, etc.
4.3. The elementary theory of finite-variation processes
4.4. Stochastic integrals: the L2 theory
4.5. Stochastic integrals with respect to continuous semimartingales
4.6. Applications of Ito's formula
5. Stochastic differential equations and diffusions
5.1. Introduction
5.2. Pathwise uniqueness, strong SDEs, flows
5.3. Weak solutions, uniqueness in law
5.4. Martingale problems, Markov property
5.5. Overture to stochastic differential geometry
5.6. One-dimensional SDEs
5.7. One-dimensional diffusions
6. The general theory
6.1. Orientation
6.2. Debut and section theorems
6.3. Optional projections and filtering
6.4. Characterising previsible times
6.5. Dual previsible projections
6.6. The Meyer decomposition theorem
6.7. Stochastic integration: the general case
6.8. Ito excursion theory
References
Index.
4. Introduction to Ito calculus
4.1. Some motivating remarks
4.2. Some fundamental ideas: previsible processes, localization, etc.
4.3. The elementary theory of finite-variation processes
4.4. Stochastic integrals: the L2 theory
4.5. Stochastic integrals with respect to continuous semimartingales
4.6. Applications of Ito's formula
5. Stochastic differential equations and diffusions
5.1. Introduction
5.2. Pathwise uniqueness, strong SDEs, flows
5.3. Weak solutions, uniqueness in law
5.4. Martingale problems, Markov property
5.5. Overture to stochastic differential geometry
5.6. One-dimensional SDEs
5.7. One-dimensional diffusions
6. The general theory
6.1. Orientation
6.2. Debut and section theorems
6.3. Optional projections and filtering
6.4. Characterising previsible times
6.5. Dual previsible projections
6.6. The Meyer decomposition theorem
6.7. Stochastic integration: the general case
6.8. Ito excursion theory
References
Index.
Some frequently used notation
4. Introduction to Ito calculus
4.1. Some motivating remarks
4.2. Some fundamental ideas: previsible processes, localization, etc.
4.3. The elementary theory of finite-variation processes
4.4. Stochastic integrals: the L2 theory
4.5. Stochastic integrals with respect to continuous semimartingales
4.6. Applications of Ito's formula
5. Stochastic differential equations and diffusions
5.1. Introduction
5.2. Pathwise uniqueness, strong SDEs, flows
5.3. Weak solutions, uniqueness in law
5.4. Martingale problems, Markov property
5.5. Overture to stochastic differential geometry
5.6. One-dimensional SDEs
5.7. One-dimensional diffusions
6. The general theory
6.1. Orientation
6.2. Debut and section theorems
6.3. Optional projections and filtering
6.4. Characterising previsible times
6.5. Dual previsible projections
6.6. The Meyer decomposition theorem
6.7. Stochastic integration: the general case
6.8. Ito excursion theory
References
Index.
4. Introduction to Ito calculus
4.1. Some motivating remarks
4.2. Some fundamental ideas: previsible processes, localization, etc.
4.3. The elementary theory of finite-variation processes
4.4. Stochastic integrals: the L2 theory
4.5. Stochastic integrals with respect to continuous semimartingales
4.6. Applications of Ito's formula
5. Stochastic differential equations and diffusions
5.1. Introduction
5.2. Pathwise uniqueness, strong SDEs, flows
5.3. Weak solutions, uniqueness in law
5.4. Martingale problems, Markov property
5.5. Overture to stochastic differential geometry
5.6. One-dimensional SDEs
5.7. One-dimensional diffusions
6. The general theory
6.1. Orientation
6.2. Debut and section theorems
6.3. Optional projections and filtering
6.4. Characterising previsible times
6.5. Dual previsible projections
6.6. The Meyer decomposition theorem
6.7. Stochastic integration: the general case
6.8. Ito excursion theory
References
Index.







