40,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
20 °P sammeln
  • Broschiertes Buch

Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality that corresponds to the intrinsic dimensionality of the data. Number of variables or attributes of any data set effect to a large extent clustering of that particular data. These attributes directly affect the dissimilarity or distance measures thereby effecting accuracy of data. So dimensionality reduction techniques can definitely improve clustering. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters…mehr

Produktbeschreibung
Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality that corresponds to the intrinsic dimensionality of the data. Number of variables or attributes of any data set effect to a large extent clustering of that particular data. These attributes directly affect the dissimilarity or distance measures thereby effecting accuracy of data. So dimensionality reduction techniques can definitely improve clustering. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details but achieves simplification. It models data by its clusters.
Autorenporträt
A Dra. Juliet Rozario é uma especialista com mais de 14 anos de experiência académica, tendo contribuído de forma consistente para o avanço da investigação, do ensino e das aplicações práticas na sua área. As suas áreas de especialização incluem algoritmos inspirados na natureza, inteligência artificial e técnicas de otimização, que se revelaram fundamentais na resolução de problemas complexos.